Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation

The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
Hauptverfasser: Xingyan Bin, Zhao, Ying, Shen, Bilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xingyan Bin
Zhao, Ying
Shen, Bilong
description The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079647682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079647682</sourcerecordid><originalsourceid>FETCH-proquest_journals_20796476823</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJP-XJZa0Z1Q9yVtX8FSk_iSLry9FTyAq4GZWbFASHmI8liIDQudGznnIs1EksiAVUWrDT3VBPXcOqs6hNoqcgi3soDBEBTaLPkNJ_TY-YfRoHQPV-2RLKFXX7Vj60FNDsMft2x_ru7lJbJkXjM634xmJr2kRvDsmMZZmgv53_UBO-o6lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079647682</pqid></control><display><type>article</type><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><source>Free E- Journals</source><creator>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</creator><creatorcontrib>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</creatorcontrib><description>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Model accuracy ; Principal components analysis</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xingyan Bin</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Shen, Bilong</creatorcontrib><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><title>arXiv.org</title><description>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</description><subject>Anomalies</subject><subject>Model accuracy</subject><subject>Principal components analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJP-XJZa0Z1Q9yVtX8FSk_iSLry9FTyAq4GZWbFASHmI8liIDQudGznnIs1EksiAVUWrDT3VBPXcOqs6hNoqcgi3soDBEBTaLPkNJ_TY-YfRoHQPV-2RLKFXX7Vj60FNDsMft2x_ru7lJbJkXjM634xmJr2kRvDsmMZZmgv53_UBO-o6lg</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Xingyan Bin</creator><creator>Zhao, Ying</creator><creator>Shen, Bilong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160516</creationdate><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><author>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20796476823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Model accuracy</topic><topic>Principal components analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xingyan Bin</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Shen, Bilong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xingyan Bin</au><au>Zhao, Ying</au><au>Shen, Bilong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</atitle><jtitle>arXiv.org</jtitle><date>2016-05-16</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079647682
source Free E- Journals
subjects Anomalies
Model accuracy
Principal components analysis
title Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Abnormal%20Subspace%20Sparse%20PCA%20for%20Anomaly%20Detection%20and%20Interpretation&rft.jtitle=arXiv.org&rft.au=Xingyan%20Bin&rft.date=2016-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079647682%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079647682&rft_id=info:pmid/&rfr_iscdi=true