Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation
The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xingyan Bin Zhao, Ying Shen, Bilong |
description | The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079647682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079647682</sourcerecordid><originalsourceid>FETCH-proquest_journals_20796476823</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJP-XJZa0Z1Q9yVtX8FSk_iSLry9FTyAq4GZWbFASHmI8liIDQudGznnIs1EksiAVUWrDT3VBPXcOqs6hNoqcgi3soDBEBTaLPkNJ_TY-YfRoHQPV-2RLKFXX7Vj60FNDsMft2x_ru7lJbJkXjM634xmJr2kRvDsmMZZmgv53_UBO-o6lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079647682</pqid></control><display><type>article</type><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><source>Free E- Journals</source><creator>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</creator><creatorcontrib>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</creatorcontrib><description>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Model accuracy ; Principal components analysis</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xingyan Bin</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Shen, Bilong</creatorcontrib><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><title>arXiv.org</title><description>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</description><subject>Anomalies</subject><subject>Model accuracy</subject><subject>Principal components analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJP-XJZa0Z1Q9yVtX8FSk_iSLry9FTyAq4GZWbFASHmI8liIDQudGznnIs1EksiAVUWrDT3VBPXcOqs6hNoqcgi3soDBEBTaLPkNJ_TY-YfRoHQPV-2RLKFXX7Vj60FNDsMft2x_ru7lJbJkXjM634xmJr2kRvDsmMZZmgv53_UBO-o6lg</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Xingyan Bin</creator><creator>Zhao, Ying</creator><creator>Shen, Bilong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160516</creationdate><title>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</title><author>Xingyan Bin ; Zhao, Ying ; Shen, Bilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20796476823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Model accuracy</topic><topic>Principal components analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xingyan Bin</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Shen, Bilong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xingyan Bin</au><au>Zhao, Ying</au><au>Shen, Bilong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation</atitle><jtitle>arXiv.org</jtitle><date>2016-05-16</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079647682 |
source | Free E- Journals |
subjects | Anomalies Model accuracy Principal components analysis |
title | Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Abnormal%20Subspace%20Sparse%20PCA%20for%20Anomaly%20Detection%20and%20Interpretation&rft.jtitle=arXiv.org&rft.au=Xingyan%20Bin&rft.date=2016-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079647682%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079647682&rft_id=info:pmid/&rfr_iscdi=true |