First-principles study of \(\langle c+a \rangle\) dislocations in Mg

We use first-principles density functional theory to study the generalized stacking fault energy surfaces for pyramidal-I and pyramidal-II slip systems in Mg. We demonstrate that the additional relaxation of atomic motions normal to the slip direction allows for the appropriate local minimum in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-05
Hauptverfasser: Kumar, Anil, Morrow, Benjamin, McCabe, Rodney J, Beyerlein, Irene J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kumar, Anil
Morrow, Benjamin
McCabe, Rodney J
Beyerlein, Irene J
description We use first-principles density functional theory to study the generalized stacking fault energy surfaces for pyramidal-I and pyramidal-II slip systems in Mg. We demonstrate that the additional relaxation of atomic motions normal to the slip direction allows for the appropriate local minimum in the generalized stacking fault energy (GSFE) curve to be found. The fault energy calculations suggest that formation of pyramidal-I dislocations would be slightly more energetically favorable than that for pyramidal-II dislocations. The calculated pyramidal-II GSFE curves also indicate that the full pyramidal II dislocations would dissociate into the Stohr and Poirier (SP) configuration, consisting of two \(\frac{1}{2}\langle c+a \rangle\) partials, \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) , but the pyramidal-I GSFE curves, while also possessing a local minimum, would not dissociate into the same SP configuration. We report observation of these partials here emanating from a \(\{10{\bar1}2 \}\) twin boundary. Using MD simulations with MEAM potential for Mg, we find that the full pyramidal-II \(\langle c+a \rangle \) dislocation splits into two equal value partials \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) separated by ~22.6 \(\AA\). We reveal that the full pyramidal-I \(\langle c+a \rangle\) dislocation dissociates also into two equal value partials but onto alternating \((30{\bar3}4)\) and \((30{\bar3}2)\) planes with \(\frac{1}{6} [20{\bar2}3]\) and \(\frac{1}{6} [02{\bar2}3]\) Burgers vectors separated by a 30.4 \(\AA\) wide stacking fault. When a stress is applied, edge and mixed dislocations of the extended pyramidal-II dislocation can move on their glide plane; however, pyramidal-I dislocations of similar character cannot.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079636039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079636039</sourcerecordid><originalsourceid>FETCH-proquest_journals_20796360393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwccssKi7RLSjKzEvOLMhJLVYoLilNqVTIT1OI0YjJScxLz0lVSNZOVIgpArNjNBVSMotz8pMTSzLz84oVMvMUfNN5GFjTEnOKU3mhNDeDsptriLMH0Nj8wtLU4pL4rPzSojygVLyRgbmlmbGZgbGlMXGqAO2SOdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079636039</pqid></control><display><type>article</type><title>First-principles study of \(\langle c+a \rangle\) dislocations in Mg</title><source>Free E- Journals</source><creator>Kumar, Anil ; Morrow, Benjamin ; McCabe, Rodney J ; Beyerlein, Irene J</creator><creatorcontrib>Kumar, Anil ; Morrow, Benjamin ; McCabe, Rodney J ; Beyerlein, Irene J</creatorcontrib><description>We use first-principles density functional theory to study the generalized stacking fault energy surfaces for pyramidal-I and pyramidal-II slip systems in Mg. We demonstrate that the additional relaxation of atomic motions normal to the slip direction allows for the appropriate local minimum in the generalized stacking fault energy (GSFE) curve to be found. The fault energy calculations suggest that formation of pyramidal-I dislocations would be slightly more energetically favorable than that for pyramidal-II dislocations. The calculated pyramidal-II GSFE curves also indicate that the full pyramidal II dislocations would dissociate into the Stohr and Poirier (SP) configuration, consisting of two \(\frac{1}{2}\langle c+a \rangle\) partials, \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) , but the pyramidal-I GSFE curves, while also possessing a local minimum, would not dissociate into the same SP configuration. We report observation of these partials here emanating from a \(\{10{\bar1}2 \}\) twin boundary. Using MD simulations with MEAM potential for Mg, we find that the full pyramidal-II \(\langle c+a \rangle \) dislocation splits into two equal value partials \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) separated by ~22.6 \(\AA\). We reveal that the full pyramidal-I \(\langle c+a \rangle\) dislocation dissociates also into two equal value partials but onto alternating \((30{\bar3}4)\) and \((30{\bar3}2)\) planes with \(\frac{1}{6} [20{\bar2}3]\) and \(\frac{1}{6} [02{\bar2}3]\) Burgers vectors separated by a 30.4 \(\AA\) wide stacking fault. When a stress is applied, edge and mixed dislocations of the extended pyramidal-II dislocation can move on their glide plane; however, pyramidal-I dislocations of similar character cannot.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Deformation ; Density functional theory ; Dislocation density ; First principles ; Mathematical analysis ; Slip ; Stacking fault energy ; Twin boundaries</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kumar, Anil</creatorcontrib><creatorcontrib>Morrow, Benjamin</creatorcontrib><creatorcontrib>McCabe, Rodney J</creatorcontrib><creatorcontrib>Beyerlein, Irene J</creatorcontrib><title>First-principles study of \(\langle c+a \rangle\) dislocations in Mg</title><title>arXiv.org</title><description>We use first-principles density functional theory to study the generalized stacking fault energy surfaces for pyramidal-I and pyramidal-II slip systems in Mg. We demonstrate that the additional relaxation of atomic motions normal to the slip direction allows for the appropriate local minimum in the generalized stacking fault energy (GSFE) curve to be found. The fault energy calculations suggest that formation of pyramidal-I dislocations would be slightly more energetically favorable than that for pyramidal-II dislocations. The calculated pyramidal-II GSFE curves also indicate that the full pyramidal II dislocations would dissociate into the Stohr and Poirier (SP) configuration, consisting of two \(\frac{1}{2}\langle c+a \rangle\) partials, \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) , but the pyramidal-I GSFE curves, while also possessing a local minimum, would not dissociate into the same SP configuration. We report observation of these partials here emanating from a \(\{10{\bar1}2 \}\) twin boundary. Using MD simulations with MEAM potential for Mg, we find that the full pyramidal-II \(\langle c+a \rangle \) dislocation splits into two equal value partials \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) separated by ~22.6 \(\AA\). We reveal that the full pyramidal-I \(\langle c+a \rangle\) dislocation dissociates also into two equal value partials but onto alternating \((30{\bar3}4)\) and \((30{\bar3}2)\) planes with \(\frac{1}{6} [20{\bar2}3]\) and \(\frac{1}{6} [02{\bar2}3]\) Burgers vectors separated by a 30.4 \(\AA\) wide stacking fault. When a stress is applied, edge and mixed dislocations of the extended pyramidal-II dislocation can move on their glide plane; however, pyramidal-I dislocations of similar character cannot.</description><subject>Configurations</subject><subject>Deformation</subject><subject>Density functional theory</subject><subject>Dislocation density</subject><subject>First principles</subject><subject>Mathematical analysis</subject><subject>Slip</subject><subject>Stacking fault energy</subject><subject>Twin boundaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwccssKi7RLSjKzEvOLMhJLVYoLilNqVTIT1OI0YjJScxLz0lVSNZOVIgpArNjNBVSMotz8pMTSzLz84oVMvMUfNN5GFjTEnOKU3mhNDeDsptriLMH0Nj8wtLU4pL4rPzSojygVLyRgbmlmbGZgbGlMXGqAO2SOdI</recordid><startdate>20160515</startdate><enddate>20160515</enddate><creator>Kumar, Anil</creator><creator>Morrow, Benjamin</creator><creator>McCabe, Rodney J</creator><creator>Beyerlein, Irene J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160515</creationdate><title>First-principles study of \(\langle c+a \rangle\) dislocations in Mg</title><author>Kumar, Anil ; Morrow, Benjamin ; McCabe, Rodney J ; Beyerlein, Irene J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20796360393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Configurations</topic><topic>Deformation</topic><topic>Density functional theory</topic><topic>Dislocation density</topic><topic>First principles</topic><topic>Mathematical analysis</topic><topic>Slip</topic><topic>Stacking fault energy</topic><topic>Twin boundaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anil</creatorcontrib><creatorcontrib>Morrow, Benjamin</creatorcontrib><creatorcontrib>McCabe, Rodney J</creatorcontrib><creatorcontrib>Beyerlein, Irene J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anil</au><au>Morrow, Benjamin</au><au>McCabe, Rodney J</au><au>Beyerlein, Irene J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>First-principles study of \(\langle c+a \rangle\) dislocations in Mg</atitle><jtitle>arXiv.org</jtitle><date>2016-05-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We use first-principles density functional theory to study the generalized stacking fault energy surfaces for pyramidal-I and pyramidal-II slip systems in Mg. We demonstrate that the additional relaxation of atomic motions normal to the slip direction allows for the appropriate local minimum in the generalized stacking fault energy (GSFE) curve to be found. The fault energy calculations suggest that formation of pyramidal-I dislocations would be slightly more energetically favorable than that for pyramidal-II dislocations. The calculated pyramidal-II GSFE curves also indicate that the full pyramidal II dislocations would dissociate into the Stohr and Poirier (SP) configuration, consisting of two \(\frac{1}{2}\langle c+a \rangle\) partials, \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) , but the pyramidal-I GSFE curves, while also possessing a local minimum, would not dissociate into the same SP configuration. We report observation of these partials here emanating from a \(\{10{\bar1}2 \}\) twin boundary. Using MD simulations with MEAM potential for Mg, we find that the full pyramidal-II \(\langle c+a \rangle \) dislocation splits into two equal value partials \(\frac{1}{6}[11{\bar2}3] + \frac{1}{6}[11{\bar2}3]\) separated by ~22.6 \(\AA\). We reveal that the full pyramidal-I \(\langle c+a \rangle\) dislocation dissociates also into two equal value partials but onto alternating \((30{\bar3}4)\) and \((30{\bar3}2)\) planes with \(\frac{1}{6} [20{\bar2}3]\) and \(\frac{1}{6} [02{\bar2}3]\) Burgers vectors separated by a 30.4 \(\AA\) wide stacking fault. When a stress is applied, edge and mixed dislocations of the extended pyramidal-II dislocation can move on their glide plane; however, pyramidal-I dislocations of similar character cannot.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079636039
source Free E- Journals
subjects Configurations
Deformation
Density functional theory
Dislocation density
First principles
Mathematical analysis
Slip
Stacking fault energy
Twin boundaries
title First-principles study of \(\langle c+a \rangle\) dislocations in Mg
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=First-principles%20study%20of%20%5C(%5Clangle%20c+a%20%5Crangle%5C)%20dislocations%20in%20Mg&rft.jtitle=arXiv.org&rft.au=Kumar,%20Anil&rft.date=2016-05-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079636039%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079636039&rft_id=info:pmid/&rfr_iscdi=true