Sliding k-Transmitters: Hardness and Approximation
A sliding k-transmitter in an orthogonal polygon P is a mobile guard that travels back and forth along an orthogonal line segment s inside P. It can see a point p in P if the perpendicular from p onto s intersects the boundary of P at most k times. We show that guarding an orthogonal polygon P with...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Biedl, Therese Mehrabi, Saeed Yu, Ziting |
description | A sliding k-transmitter in an orthogonal polygon P is a mobile guard that travels back and forth along an orthogonal line segment s inside P. It can see a point p in P if the perpendicular from p onto s intersects the boundary of P at most k times. We show that guarding an orthogonal polygon P with the minimum number of k-transmitters is NP-hard, for any fixed k>0, even if P is simple and monotone. Moreover, we give an O(1)-approximation algorithm for this problem. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079594943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079594943</sourcerecordid><originalsourceid>FETCH-proquest_journals_20795949433</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCs7JTMnMS1fI1g0pSswrzs0sKUktKrZS8EgsSslLLS5WSMxLUXAsKCjKr8jMTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eukA1haWpxSXxWfmlRXlAqXgjA3NLU0sTSxNjY-JUAQDySTQh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079594943</pqid></control><display><type>article</type><title>Sliding k-Transmitters: Hardness and Approximation</title><source>Free E- Journals</source><creator>Biedl, Therese ; Mehrabi, Saeed ; Yu, Ziting</creator><creatorcontrib>Biedl, Therese ; Mehrabi, Saeed ; Yu, Ziting</creatorcontrib><description>A sliding k-transmitter in an orthogonal polygon P is a mobile guard that travels back and forth along an orthogonal line segment s inside P. It can see a point p in P if the perpendicular from p onto s intersects the boundary of P at most k times. We show that guarding an orthogonal polygon P with the minimum number of k-transmitters is NP-hard, for any fixed k>0, even if P is simple and monotone. Moreover, we give an O(1)-approximation algorithm for this problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Mathematical analysis ; Sliding ; Transmitters</subject><ispartof>arXiv.org, 2016-07</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Biedl, Therese</creatorcontrib><creatorcontrib>Mehrabi, Saeed</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><title>Sliding k-Transmitters: Hardness and Approximation</title><title>arXiv.org</title><description>A sliding k-transmitter in an orthogonal polygon P is a mobile guard that travels back and forth along an orthogonal line segment s inside P. It can see a point p in P if the perpendicular from p onto s intersects the boundary of P at most k times. We show that guarding an orthogonal polygon P with the minimum number of k-transmitters is NP-hard, for any fixed k>0, even if P is simple and monotone. Moreover, we give an O(1)-approximation algorithm for this problem.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Sliding</subject><subject>Transmitters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCs7JTMnMS1fI1g0pSswrzs0sKUktKrZS8EgsSslLLS5WSMxLUXAsKCjKr8jMTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eukA1haWpxSXxWfmlRXlAqXgjA3NLU0sTSxNjY-JUAQDySTQh</recordid><startdate>20160725</startdate><enddate>20160725</enddate><creator>Biedl, Therese</creator><creator>Mehrabi, Saeed</creator><creator>Yu, Ziting</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160725</creationdate><title>Sliding k-Transmitters: Hardness and Approximation</title><author>Biedl, Therese ; Mehrabi, Saeed ; Yu, Ziting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20795949433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Sliding</topic><topic>Transmitters</topic><toplevel>online_resources</toplevel><creatorcontrib>Biedl, Therese</creatorcontrib><creatorcontrib>Mehrabi, Saeed</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biedl, Therese</au><au>Mehrabi, Saeed</au><au>Yu, Ziting</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sliding k-Transmitters: Hardness and Approximation</atitle><jtitle>arXiv.org</jtitle><date>2016-07-25</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>A sliding k-transmitter in an orthogonal polygon P is a mobile guard that travels back and forth along an orthogonal line segment s inside P. It can see a point p in P if the perpendicular from p onto s intersects the boundary of P at most k times. We show that guarding an orthogonal polygon P with the minimum number of k-transmitters is NP-hard, for any fixed k>0, even if P is simple and monotone. Moreover, we give an O(1)-approximation algorithm for this problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079594943 |
source | Free E- Journals |
subjects | Algorithms Approximation Mathematical analysis Sliding Transmitters |
title | Sliding k-Transmitters: Hardness and Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sliding%20k-Transmitters:%20Hardness%20and%20Approximation&rft.jtitle=arXiv.org&rft.au=Biedl,%20Therese&rft.date=2016-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079594943%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079594943&rft_id=info:pmid/&rfr_iscdi=true |