Global sensitivity analysis using low-rank tensor approximations
In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Konakli, K Sudret, B |
description | In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079398353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079398353</sourcerecordid><originalsourceid>FETCH-proquest_journals_20793983533</originalsourceid><addsrcrecordid>eNqNzE0KwjAQQOEgCBbtHQKuAzFjbbsTxJ8DuC8jVJkak5pJ1d7eLDyAq7f5eBORGYCVqtbGzETO3GmtzaY0RQGZ2B6tv6CV3DqmSC-Ko0SHdmRiOTC5m7T-rQK6u4zJ-CCx74P_0AMjeccLMb2i5Tb_dS6Wh_15d1IJPYeWY9P5IaQjN0aXNdQVFAD_qS_IHDpR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079398353</pqid></control><display><type>article</type><title>Global sensitivity analysis using low-rank tensor approximations</title><source>Free E- Journals</source><creator>Konakli, K ; Sudret, B</creator><creatorcontrib>Konakli, K ; Sudret, B</creatorcontrib><description>In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Conduction heating ; Conductive heat transfer ; Design of experiments ; Exact solutions ; Finite element method ; Mathematical models ; Monte Carlo simulation ; Parameter uncertainty ; Polynomials ; Post-production processing ; Sensitivity analysis ; Tensors</subject><ispartof>arXiv.org, 2016-05</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Konakli, K</creatorcontrib><creatorcontrib>Sudret, B</creatorcontrib><title>Global sensitivity analysis using low-rank tensor approximations</title><title>arXiv.org</title><description>In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model.</description><subject>Computer simulation</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Design of experiments</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>Polynomials</subject><subject>Post-production processing</subject><subject>Sensitivity analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzE0KwjAQQOEgCBbtHQKuAzFjbbsTxJ8DuC8jVJkak5pJ1d7eLDyAq7f5eBORGYCVqtbGzETO3GmtzaY0RQGZ2B6tv6CV3DqmSC-Ko0SHdmRiOTC5m7T-rQK6u4zJ-CCx74P_0AMjeccLMb2i5Tb_dS6Wh_15d1IJPYeWY9P5IaQjN0aXNdQVFAD_qS_IHDpR</recordid><startdate>20160529</startdate><enddate>20160529</enddate><creator>Konakli, K</creator><creator>Sudret, B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160529</creationdate><title>Global sensitivity analysis using low-rank tensor approximations</title><author>Konakli, K ; Sudret, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20793983533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Design of experiments</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>Polynomials</topic><topic>Post-production processing</topic><topic>Sensitivity analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Konakli, K</creatorcontrib><creatorcontrib>Sudret, B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konakli, K</au><au>Sudret, B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Global sensitivity analysis using low-rank tensor approximations</atitle><jtitle>arXiv.org</jtitle><date>2016-05-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079398353 |
source | Free E- Journals |
subjects | Computer simulation Conduction heating Conductive heat transfer Design of experiments Exact solutions Finite element method Mathematical models Monte Carlo simulation Parameter uncertainty Polynomials Post-production processing Sensitivity analysis Tensors |
title | Global sensitivity analysis using low-rank tensor approximations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Global%20sensitivity%20analysis%20using%20low-rank%20tensor%20approximations&rft.jtitle=arXiv.org&rft.au=Konakli,%20K&rft.date=2016-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079398353%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079398353&rft_id=info:pmid/&rfr_iscdi=true |