SOM-based algorithms for qualitative variables

It is well known that the SOM algorithm achieves a clustering of data which can be interpreted as an extension of Principal Component Analysis, because of its topology-preserving property. But the SOM algorithm can only process real-valued data. In previous papers, we have proposed several methods b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-10
Hauptverfasser: Cottrell, Marie, Smail Ibbou, Letrémy, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that the SOM algorithm achieves a clustering of data which can be interpreted as an extension of Principal Component Analysis, because of its topology-preserving property. But the SOM algorithm can only process real-valued data. In previous papers, we have proposed several methods based on the SOM algorithm to analyze categorical data, which is the case in survey data. In this paper, we present these methods in a unified manner. The first one (Kohonen Multiple Correspondence Analysis, KMCA) deals only with the modalities, while the two others (Kohonen Multiple Correspondence Analysis with individuals, KMCA\_ind, Kohonen algorithm on DISJonctive table, KDISJ) can take into account the individuals, and the modalities simultaneously.
ISSN:2331-8422
DOI:10.48550/arxiv.0610584