The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising
The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicab...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Censor, Yair Gibali, Aviv Lenzen, Frank Christoph Schnorr |
description | The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079225418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079225418</sourcerecordid><originalsourceid>FETCH-proquest_journals_20792254183</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_-KCzoJumHcWSvHUIOsrMZZ_ottyU-vcl9AM6vcN7vAVxKGOBl4SUrohrTOv7Pt3FNIqYQ66Xh4Ci1x3e0EKm5CRekAtusMIO7RvOg6o60QOXNRTWQKrnlltUEqyCtOba4jQ_eCPgIKRCg7LZkOWdd0a4P67JNj9espOnB_UchbFlq8ZBflVJ_XhPaRQGCfuv-gALM0EM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079225418</pqid></control><display><type>article</type><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><source>Freely Accessible Journals</source><creator>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</creator><creatorcontrib>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</creatorcontrib><description>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Feasibility ; Medical imaging ; Noise reduction ; Remote sensors ; Wireless sensor networks</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Censor, Yair</creatorcontrib><creatorcontrib>Gibali, Aviv</creatorcontrib><creatorcontrib>Lenzen, Frank</creatorcontrib><creatorcontrib>Christoph Schnorr</creatorcontrib><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><title>arXiv.org</title><description>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</description><subject>Convexity</subject><subject>Feasibility</subject><subject>Medical imaging</subject><subject>Noise reduction</subject><subject>Remote sensors</subject><subject>Wireless sensor networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEELgjAYQEcQJOV_-KCzoJumHcWSvHUIOsrMZZ_ottyU-vcl9AM6vcN7vAVxKGOBl4SUrohrTOv7Pt3FNIqYQ66Xh4Ci1x3e0EKm5CRekAtusMIO7RvOg6o60QOXNRTWQKrnlltUEqyCtOba4jQ_eCPgIKRCg7LZkOWdd0a4P67JNj9espOnB_UchbFlq8ZBflVJ_XhPaRQGCfuv-gALM0EM</recordid><startdate>20160619</startdate><enddate>20160619</enddate><creator>Censor, Yair</creator><creator>Gibali, Aviv</creator><creator>Lenzen, Frank</creator><creator>Christoph Schnorr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160619</creationdate><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><author>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20792254183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convexity</topic><topic>Feasibility</topic><topic>Medical imaging</topic><topic>Noise reduction</topic><topic>Remote sensors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Censor, Yair</creatorcontrib><creatorcontrib>Gibali, Aviv</creatorcontrib><creatorcontrib>Lenzen, Frank</creatorcontrib><creatorcontrib>Christoph Schnorr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Censor, Yair</au><au>Gibali, Aviv</au><au>Lenzen, Frank</au><au>Christoph Schnorr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</atitle><jtitle>arXiv.org</jtitle><date>2016-06-19</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079225418 |
source | Freely Accessible Journals |
subjects | Convexity Feasibility Medical imaging Noise reduction Remote sensors Wireless sensor networks |
title | The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Implicit%20Convex%20Feasibility%20Problem%20and%20Its%20Application%20to%20Adaptive%20Image%20Denoising&rft.jtitle=arXiv.org&rft.au=Censor,%20Yair&rft.date=2016-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079225418%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079225418&rft_id=info:pmid/&rfr_iscdi=true |