The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising

The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-06
Hauptverfasser: Censor, Yair, Gibali, Aviv, Lenzen, Frank, Christoph Schnorr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Censor, Yair
Gibali, Aviv
Lenzen, Frank
Christoph Schnorr
description The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079225418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079225418</sourcerecordid><originalsourceid>FETCH-proquest_journals_20792254183</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_-KCzoJumHcWSvHUIOsrMZZ_ottyU-vcl9AM6vcN7vAVxKGOBl4SUrohrTOv7Pt3FNIqYQ66Xh4Ci1x3e0EKm5CRekAtusMIO7RvOg6o60QOXNRTWQKrnlltUEqyCtOba4jQ_eCPgIKRCg7LZkOWdd0a4P67JNj9espOnB_UchbFlq8ZBflVJ_XhPaRQGCfuv-gALM0EM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079225418</pqid></control><display><type>article</type><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><source>Freely Accessible Journals</source><creator>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</creator><creatorcontrib>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</creatorcontrib><description>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Feasibility ; Medical imaging ; Noise reduction ; Remote sensors ; Wireless sensor networks</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Censor, Yair</creatorcontrib><creatorcontrib>Gibali, Aviv</creatorcontrib><creatorcontrib>Lenzen, Frank</creatorcontrib><creatorcontrib>Christoph Schnorr</creatorcontrib><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><title>arXiv.org</title><description>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</description><subject>Convexity</subject><subject>Feasibility</subject><subject>Medical imaging</subject><subject>Noise reduction</subject><subject>Remote sensors</subject><subject>Wireless sensor networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEELgjAYQEcQJOV_-KCzoJumHcWSvHUIOsrMZZ_ottyU-vcl9AM6vcN7vAVxKGOBl4SUrohrTOv7Pt3FNIqYQ66Xh4Ci1x3e0EKm5CRekAtusMIO7RvOg6o60QOXNRTWQKrnlltUEqyCtOba4jQ_eCPgIKRCg7LZkOWdd0a4P67JNj9espOnB_UchbFlq8ZBflVJ_XhPaRQGCfuv-gALM0EM</recordid><startdate>20160619</startdate><enddate>20160619</enddate><creator>Censor, Yair</creator><creator>Gibali, Aviv</creator><creator>Lenzen, Frank</creator><creator>Christoph Schnorr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160619</creationdate><title>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</title><author>Censor, Yair ; Gibali, Aviv ; Lenzen, Frank ; Christoph Schnorr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20792254183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convexity</topic><topic>Feasibility</topic><topic>Medical imaging</topic><topic>Noise reduction</topic><topic>Remote sensors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Censor, Yair</creatorcontrib><creatorcontrib>Gibali, Aviv</creatorcontrib><creatorcontrib>Lenzen, Frank</creatorcontrib><creatorcontrib>Christoph Schnorr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Censor, Yair</au><au>Gibali, Aviv</au><au>Lenzen, Frank</au><au>Christoph Schnorr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising</atitle><jtitle>arXiv.org</jtitle><date>2016-06-19</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. By allowing the variable sets to undergo scaling, shifting and rotation, this work generalizes previous results wherein the implicit convex feasibility problem was used for cooperative wireless sensor network positioning where sets are balls and their centers were implicit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2079225418
source Freely Accessible Journals
subjects Convexity
Feasibility
Medical imaging
Noise reduction
Remote sensors
Wireless sensor networks
title The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Implicit%20Convex%20Feasibility%20Problem%20and%20Its%20Application%20to%20Adaptive%20Image%20Denoising&rft.jtitle=arXiv.org&rft.au=Censor,%20Yair&rft.date=2016-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079225418%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079225418&rft_id=info:pmid/&rfr_iscdi=true