Prediction and Optimal Scheduling of Advertisements in Linear Television
Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effecti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Panaggio, Mark J Pak-Wing Fok Bhatt, Ghan S Burhoe, Simon Capps, Michael Edholm, Christina J Fadoua El Moustaid Emerson, Tegan Star-Lena Estock Gold, Nathan Halabi, Ryan Houser, Madelyn Kramer, Peter R Hsuan-Wei, Lee Li, Qingxia Li, Weiqiang Lu, Dan Qian, Yuzhou Rossi, Louis F Shutt, Deborah Yang, Vicky Chuqiao Zhou, Yingxiang |
description | Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of "impressions" in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079168371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079168371</sourcerecordid><originalsourceid>FETCH-proquest_journals_20791683713</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTv8IFzIU3sj6OI0kFQsHsJzVdNSZOapH1-O_gATjfc3YpEjPM0KQ-MbUjsfU8pZXnBsoxHpHo4lKoNyhoQRsJ9DGoQGp7tG-WklXmB7eAkZ3RBeRzQBA_KwE0ZFA5q1Dgrv9w7su6E9hj_uCX766U-V8no7GdCH5reTs4sqmG0OKZ5yYuU_1d9AVeTPDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079168371</pqid></control><display><type>article</type><title>Prediction and Optimal Scheduling of Advertisements in Linear Television</title><source>Free E- Journals</source><creator>Panaggio, Mark J ; Pak-Wing Fok ; Bhatt, Ghan S ; Burhoe, Simon ; Capps, Michael ; Edholm, Christina J ; Fadoua El Moustaid ; Emerson, Tegan ; Star-Lena Estock ; Gold, Nathan ; Halabi, Ryan ; Houser, Madelyn ; Kramer, Peter R ; Hsuan-Wei, Lee ; Li, Qingxia ; Li, Weiqiang ; Lu, Dan ; Qian, Yuzhou ; Rossi, Louis F ; Shutt, Deborah ; Yang, Vicky Chuqiao ; Zhou, Yingxiang</creator><creatorcontrib>Panaggio, Mark J ; Pak-Wing Fok ; Bhatt, Ghan S ; Burhoe, Simon ; Capps, Michael ; Edholm, Christina J ; Fadoua El Moustaid ; Emerson, Tegan ; Star-Lena Estock ; Gold, Nathan ; Halabi, Ryan ; Houser, Madelyn ; Kramer, Peter R ; Hsuan-Wei, Lee ; Li, Qingxia ; Li, Weiqiang ; Lu, Dan ; Qian, Yuzhou ; Rossi, Louis F ; Shutt, Deborah ; Yang, Vicky Chuqiao ; Zhou, Yingxiang</creatorcontrib><description>Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of "impressions" in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Advertisements ; Advertising ; Demographics ; Marketing ; Optimization ; Schedules ; Scheduling ; Target markets ; Television ; Television advertising</subject><ispartof>arXiv.org, 2016-08</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Panaggio, Mark J</creatorcontrib><creatorcontrib>Pak-Wing Fok</creatorcontrib><creatorcontrib>Bhatt, Ghan S</creatorcontrib><creatorcontrib>Burhoe, Simon</creatorcontrib><creatorcontrib>Capps, Michael</creatorcontrib><creatorcontrib>Edholm, Christina J</creatorcontrib><creatorcontrib>Fadoua El Moustaid</creatorcontrib><creatorcontrib>Emerson, Tegan</creatorcontrib><creatorcontrib>Star-Lena Estock</creatorcontrib><creatorcontrib>Gold, Nathan</creatorcontrib><creatorcontrib>Halabi, Ryan</creatorcontrib><creatorcontrib>Houser, Madelyn</creatorcontrib><creatorcontrib>Kramer, Peter R</creatorcontrib><creatorcontrib>Hsuan-Wei, Lee</creatorcontrib><creatorcontrib>Li, Qingxia</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Lu, Dan</creatorcontrib><creatorcontrib>Qian, Yuzhou</creatorcontrib><creatorcontrib>Rossi, Louis F</creatorcontrib><creatorcontrib>Shutt, Deborah</creatorcontrib><creatorcontrib>Yang, Vicky Chuqiao</creatorcontrib><creatorcontrib>Zhou, Yingxiang</creatorcontrib><title>Prediction and Optimal Scheduling of Advertisements in Linear Television</title><title>arXiv.org</title><description>Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of "impressions" in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue.</description><subject>Advertisements</subject><subject>Advertising</subject><subject>Demographics</subject><subject>Marketing</subject><subject>Optimization</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Target markets</subject><subject>Television</subject><subject>Television advertising</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYAIMgWLTv8IFzIU3sj6OI0kFQsHsJzVdNSZOapH1-O_gATjfc3YpEjPM0KQ-MbUjsfU8pZXnBsoxHpHo4lKoNyhoQRsJ9DGoQGp7tG-WklXmB7eAkZ3RBeRzQBA_KwE0ZFA5q1Dgrv9w7su6E9hj_uCX766U-V8no7GdCH5reTs4sqmG0OKZ5yYuU_1d9AVeTPDw</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>Panaggio, Mark J</creator><creator>Pak-Wing Fok</creator><creator>Bhatt, Ghan S</creator><creator>Burhoe, Simon</creator><creator>Capps, Michael</creator><creator>Edholm, Christina J</creator><creator>Fadoua El Moustaid</creator><creator>Emerson, Tegan</creator><creator>Star-Lena Estock</creator><creator>Gold, Nathan</creator><creator>Halabi, Ryan</creator><creator>Houser, Madelyn</creator><creator>Kramer, Peter R</creator><creator>Hsuan-Wei, Lee</creator><creator>Li, Qingxia</creator><creator>Li, Weiqiang</creator><creator>Lu, Dan</creator><creator>Qian, Yuzhou</creator><creator>Rossi, Louis F</creator><creator>Shutt, Deborah</creator><creator>Yang, Vicky Chuqiao</creator><creator>Zhou, Yingxiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160825</creationdate><title>Prediction and Optimal Scheduling of Advertisements in Linear Television</title><author>Panaggio, Mark J ; Pak-Wing Fok ; Bhatt, Ghan S ; Burhoe, Simon ; Capps, Michael ; Edholm, Christina J ; Fadoua El Moustaid ; Emerson, Tegan ; Star-Lena Estock ; Gold, Nathan ; Halabi, Ryan ; Houser, Madelyn ; Kramer, Peter R ; Hsuan-Wei, Lee ; Li, Qingxia ; Li, Weiqiang ; Lu, Dan ; Qian, Yuzhou ; Rossi, Louis F ; Shutt, Deborah ; Yang, Vicky Chuqiao ; Zhou, Yingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20791683713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advertisements</topic><topic>Advertising</topic><topic>Demographics</topic><topic>Marketing</topic><topic>Optimization</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Target markets</topic><topic>Television</topic><topic>Television advertising</topic><toplevel>online_resources</toplevel><creatorcontrib>Panaggio, Mark J</creatorcontrib><creatorcontrib>Pak-Wing Fok</creatorcontrib><creatorcontrib>Bhatt, Ghan S</creatorcontrib><creatorcontrib>Burhoe, Simon</creatorcontrib><creatorcontrib>Capps, Michael</creatorcontrib><creatorcontrib>Edholm, Christina J</creatorcontrib><creatorcontrib>Fadoua El Moustaid</creatorcontrib><creatorcontrib>Emerson, Tegan</creatorcontrib><creatorcontrib>Star-Lena Estock</creatorcontrib><creatorcontrib>Gold, Nathan</creatorcontrib><creatorcontrib>Halabi, Ryan</creatorcontrib><creatorcontrib>Houser, Madelyn</creatorcontrib><creatorcontrib>Kramer, Peter R</creatorcontrib><creatorcontrib>Hsuan-Wei, Lee</creatorcontrib><creatorcontrib>Li, Qingxia</creatorcontrib><creatorcontrib>Li, Weiqiang</creatorcontrib><creatorcontrib>Lu, Dan</creatorcontrib><creatorcontrib>Qian, Yuzhou</creatorcontrib><creatorcontrib>Rossi, Louis F</creatorcontrib><creatorcontrib>Shutt, Deborah</creatorcontrib><creatorcontrib>Yang, Vicky Chuqiao</creatorcontrib><creatorcontrib>Zhou, Yingxiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panaggio, Mark J</au><au>Pak-Wing Fok</au><au>Bhatt, Ghan S</au><au>Burhoe, Simon</au><au>Capps, Michael</au><au>Edholm, Christina J</au><au>Fadoua El Moustaid</au><au>Emerson, Tegan</au><au>Star-Lena Estock</au><au>Gold, Nathan</au><au>Halabi, Ryan</au><au>Houser, Madelyn</au><au>Kramer, Peter R</au><au>Hsuan-Wei, Lee</au><au>Li, Qingxia</au><au>Li, Weiqiang</au><au>Lu, Dan</au><au>Qian, Yuzhou</au><au>Rossi, Louis F</au><au>Shutt, Deborah</au><au>Yang, Vicky Chuqiao</au><au>Zhou, Yingxiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Prediction and Optimal Scheduling of Advertisements in Linear Television</atitle><jtitle>arXiv.org</jtitle><date>2016-08-25</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of "impressions" in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079168371 |
source | Free E- Journals |
subjects | Advertisements Advertising Demographics Marketing Optimization Schedules Scheduling Target markets Television Television advertising |
title | Prediction and Optimal Scheduling of Advertisements in Linear Television |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Prediction%20and%20Optimal%20Scheduling%20of%20Advertisements%20in%20Linear%20Television&rft.jtitle=arXiv.org&rft.au=Panaggio,%20Mark%20J&rft.date=2016-08-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079168371%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079168371&rft_id=info:pmid/&rfr_iscdi=true |