A photonic platform for donor spin qubits in silicon
Donor impurity spins in silicon-28 are highly competitive qubits for upcoming solid-state quantum technologies, yet a proven scalable strategy for multi-qubit devices remains conspicuously absent. These CMOS-compatible, atomically identical qubits offer significant advantages including 3-hour cohere...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-06 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Morse, Kevin J Abraham, Rohan J S Riemann, Helge Abrosimov, Nikolai V Becker, Peter Pohl, Hans-Joachim Thewalt, Michael L W Simmons, Stephanie |
description | Donor impurity spins in silicon-28 are highly competitive qubits for upcoming solid-state quantum technologies, yet a proven scalable strategy for multi-qubit devices remains conspicuously absent. These CMOS-compatible, atomically identical qubits offer significant advantages including 3-hour coherence (\(T_2\)) lifetimes, as well as simultaneous qubit initialization, manipulation and readout fidelities near \(\sim\!99.9\%\). These properties meet the requirements for many modern quantum error correction protocols, which are essential for constructing large-scale universal quantum technologies. However, a method of reliably coupling spatially-separated qubits, which crucially does not sacrifice qubit quality and is robust to manufacturing imperfections, has yet to be identified. Here we present such a platform for donor qubits in silicon, by exploiting optically-accessible `deep' chalcogen donors. We show that these donors emit highly uniform light, can be optically initialized, and offer long-lived spin qubit ground states without requiring milliKelvin temperatures. These combined properties make chalcogen donors uniquely suitable for incorporation into silicon photonic architectures for single-shot single-qubit readout as well as for multi-qubit coupling. This unlocks clear pathways for silicon-based quantum computing, spin to photon conversion, photonic memories, silicon-integrated triggered single photon sources and all-optical silicon switches. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2079164667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079164667</sourcerecordid><originalsourceid>FETCH-proquest_journals_20791646673</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcVQoyMgvyc_LTFYoyEksScsvylUAEgop-XlAsrggM0-hsDQps6RYAcgqzszJTM7P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0tDMxMzM3Nj4lQBAFOfNKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079164667</pqid></control><display><type>article</type><title>A photonic platform for donor spin qubits in silicon</title><source>Free E- Journals</source><creator>Morse, Kevin J ; Abraham, Rohan J S ; Riemann, Helge ; Abrosimov, Nikolai V ; Becker, Peter ; Pohl, Hans-Joachim ; Thewalt, Michael L W ; Simmons, Stephanie</creator><creatorcontrib>Morse, Kevin J ; Abraham, Rohan J S ; Riemann, Helge ; Abrosimov, Nikolai V ; Becker, Peter ; Pohl, Hans-Joachim ; Thewalt, Michael L W ; Simmons, Stephanie</creatorcontrib><description>Donor impurity spins in silicon-28 are highly competitive qubits for upcoming solid-state quantum technologies, yet a proven scalable strategy for multi-qubit devices remains conspicuously absent. These CMOS-compatible, atomically identical qubits offer significant advantages including 3-hour coherence (\(T_2\)) lifetimes, as well as simultaneous qubit initialization, manipulation and readout fidelities near \(\sim\!99.9\%\). These properties meet the requirements for many modern quantum error correction protocols, which are essential for constructing large-scale universal quantum technologies. However, a method of reliably coupling spatially-separated qubits, which crucially does not sacrifice qubit quality and is robust to manufacturing imperfections, has yet to be identified. Here we present such a platform for donor qubits in silicon, by exploiting optically-accessible `deep' chalcogen donors. We show that these donors emit highly uniform light, can be optically initialized, and offer long-lived spin qubit ground states without requiring milliKelvin temperatures. These combined properties make chalcogen donors uniquely suitable for incorporation into silicon photonic architectures for single-shot single-qubit readout as well as for multi-qubit coupling. This unlocks clear pathways for silicon-based quantum computing, spin to photon conversion, photonic memories, silicon-integrated triggered single photon sources and all-optical silicon switches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Business competition ; CMOS ; Coupling ; Error correction ; Photonics ; Quantum computing ; Quantum theory ; Qubits (quantum computing) ; Silicon ; Switches</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Morse, Kevin J</creatorcontrib><creatorcontrib>Abraham, Rohan J S</creatorcontrib><creatorcontrib>Riemann, Helge</creatorcontrib><creatorcontrib>Abrosimov, Nikolai V</creatorcontrib><creatorcontrib>Becker, Peter</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L W</creatorcontrib><creatorcontrib>Simmons, Stephanie</creatorcontrib><title>A photonic platform for donor spin qubits in silicon</title><title>arXiv.org</title><description>Donor impurity spins in silicon-28 are highly competitive qubits for upcoming solid-state quantum technologies, yet a proven scalable strategy for multi-qubit devices remains conspicuously absent. These CMOS-compatible, atomically identical qubits offer significant advantages including 3-hour coherence (\(T_2\)) lifetimes, as well as simultaneous qubit initialization, manipulation and readout fidelities near \(\sim\!99.9\%\). These properties meet the requirements for many modern quantum error correction protocols, which are essential for constructing large-scale universal quantum technologies. However, a method of reliably coupling spatially-separated qubits, which crucially does not sacrifice qubit quality and is robust to manufacturing imperfections, has yet to be identified. Here we present such a platform for donor qubits in silicon, by exploiting optically-accessible `deep' chalcogen donors. We show that these donors emit highly uniform light, can be optically initialized, and offer long-lived spin qubit ground states without requiring milliKelvin temperatures. These combined properties make chalcogen donors uniquely suitable for incorporation into silicon photonic architectures for single-shot single-qubit readout as well as for multi-qubit coupling. This unlocks clear pathways for silicon-based quantum computing, spin to photon conversion, photonic memories, silicon-integrated triggered single photon sources and all-optical silicon switches.</description><subject>Business competition</subject><subject>CMOS</subject><subject>Coupling</subject><subject>Error correction</subject><subject>Photonics</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Silicon</subject><subject>Switches</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcVQoyMgvyc_LTFYoyEksScsvylUAEgop-XlAsrggM0-hsDQps6RYAcgqzszJTM7P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0tDMxMzM3Nj4lQBAFOfNKY</recordid><startdate>20160610</startdate><enddate>20160610</enddate><creator>Morse, Kevin J</creator><creator>Abraham, Rohan J S</creator><creator>Riemann, Helge</creator><creator>Abrosimov, Nikolai V</creator><creator>Becker, Peter</creator><creator>Pohl, Hans-Joachim</creator><creator>Thewalt, Michael L W</creator><creator>Simmons, Stephanie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160610</creationdate><title>A photonic platform for donor spin qubits in silicon</title><author>Morse, Kevin J ; Abraham, Rohan J S ; Riemann, Helge ; Abrosimov, Nikolai V ; Becker, Peter ; Pohl, Hans-Joachim ; Thewalt, Michael L W ; Simmons, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20791646673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Business competition</topic><topic>CMOS</topic><topic>Coupling</topic><topic>Error correction</topic><topic>Photonics</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Silicon</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Morse, Kevin J</creatorcontrib><creatorcontrib>Abraham, Rohan J S</creatorcontrib><creatorcontrib>Riemann, Helge</creatorcontrib><creatorcontrib>Abrosimov, Nikolai V</creatorcontrib><creatorcontrib>Becker, Peter</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L W</creatorcontrib><creatorcontrib>Simmons, Stephanie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morse, Kevin J</au><au>Abraham, Rohan J S</au><au>Riemann, Helge</au><au>Abrosimov, Nikolai V</au><au>Becker, Peter</au><au>Pohl, Hans-Joachim</au><au>Thewalt, Michael L W</au><au>Simmons, Stephanie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A photonic platform for donor spin qubits in silicon</atitle><jtitle>arXiv.org</jtitle><date>2016-06-10</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Donor impurity spins in silicon-28 are highly competitive qubits for upcoming solid-state quantum technologies, yet a proven scalable strategy for multi-qubit devices remains conspicuously absent. These CMOS-compatible, atomically identical qubits offer significant advantages including 3-hour coherence (\(T_2\)) lifetimes, as well as simultaneous qubit initialization, manipulation and readout fidelities near \(\sim\!99.9\%\). These properties meet the requirements for many modern quantum error correction protocols, which are essential for constructing large-scale universal quantum technologies. However, a method of reliably coupling spatially-separated qubits, which crucially does not sacrifice qubit quality and is robust to manufacturing imperfections, has yet to be identified. Here we present such a platform for donor qubits in silicon, by exploiting optically-accessible `deep' chalcogen donors. We show that these donors emit highly uniform light, can be optically initialized, and offer long-lived spin qubit ground states without requiring milliKelvin temperatures. These combined properties make chalcogen donors uniquely suitable for incorporation into silicon photonic architectures for single-shot single-qubit readout as well as for multi-qubit coupling. This unlocks clear pathways for silicon-based quantum computing, spin to photon conversion, photonic memories, silicon-integrated triggered single photon sources and all-optical silicon switches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2079164667 |
source | Free E- Journals |
subjects | Business competition CMOS Coupling Error correction Photonics Quantum computing Quantum theory Qubits (quantum computing) Silicon Switches |
title | A photonic platform for donor spin qubits in silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20photonic%20platform%20for%20donor%20spin%20qubits%20in%20silicon&rft.jtitle=arXiv.org&rft.au=Morse,%20Kevin%20J&rft.date=2016-06-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2079164667%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079164667&rft_id=info:pmid/&rfr_iscdi=true |