A Strange Family of Calabi-Yau 3-folds

We study the predictions of mirror symmetry for the 1-parameter family of Calabi-Yau 3-folds \(\tilde{X}\) with hodge numbers \(h^{11}=31,h^{21}=1\) constructed in \cite{BN}. We calculate the Picard-Fuchs differential equation associated to this family, and use it to predict the instanton numbers on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2013-08
Hauptverfasser: Devlin, Patrick, Nuer, Howard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Devlin, Patrick
Nuer, Howard J
description We study the predictions of mirror symmetry for the 1-parameter family of Calabi-Yau 3-folds \(\tilde{X}\) with hodge numbers \(h^{11}=31,h^{21}=1\) constructed in \cite{BN}. We calculate the Picard-Fuchs differential equation associated to this family, and use it to predict the instanton numbers on the hypothetical mirror. These exhibit a strange vanishing in odd degrees. We also calculate the monodromy action on \(H^3(\tilde{X},\QQ)\) and find that it strangely predicts a positive Euler characteristic for its mirror. From a degenerate fiber of our family we construct a new rigid Calabi-Yau 3-fold. In an appendix we prove the expansion of the conifold period conjectured in \cite{ES} to hold for all 1-parameter families.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078996498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078996498</sourcerecordid><originalsourceid>FETCH-proquest_journals_20789964983</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQc1QILilKzEtPVXBLzM3MqVTIT1NwTsxJTMrUjUwsVTDWTcvPSSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC0tLMxNLC2PiVAEAoQ4uIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078996498</pqid></control><display><type>article</type><title>A Strange Family of Calabi-Yau 3-folds</title><source>Free E- Journals</source><creator>Devlin, Patrick ; Nuer, Howard J</creator><creatorcontrib>Devlin, Patrick ; Nuer, Howard J</creatorcontrib><description>We study the predictions of mirror symmetry for the 1-parameter family of Calabi-Yau 3-folds \(\tilde{X}\) with hodge numbers \(h^{11}=31,h^{21}=1\) constructed in \cite{BN}. We calculate the Picard-Fuchs differential equation associated to this family, and use it to predict the instanton numbers on the hypothetical mirror. These exhibit a strange vanishing in odd degrees. We also calculate the monodromy action on \(H^3(\tilde{X},\QQ)\) and find that it strangely predicts a positive Euler characteristic for its mirror. From a degenerate fiber of our family we construct a new rigid Calabi-Yau 3-fold. In an appendix we prove the expansion of the conifold period conjectured in \cite{ES} to hold for all 1-parameter families.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Mathematical analysis ; Parameters</subject><ispartof>arXiv.org, 2013-08</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Devlin, Patrick</creatorcontrib><creatorcontrib>Nuer, Howard J</creatorcontrib><title>A Strange Family of Calabi-Yau 3-folds</title><title>arXiv.org</title><description>We study the predictions of mirror symmetry for the 1-parameter family of Calabi-Yau 3-folds \(\tilde{X}\) with hodge numbers \(h^{11}=31,h^{21}=1\) constructed in \cite{BN}. We calculate the Picard-Fuchs differential equation associated to this family, and use it to predict the instanton numbers on the hypothetical mirror. These exhibit a strange vanishing in odd degrees. We also calculate the monodromy action on \(H^3(\tilde{X},\QQ)\) and find that it strangely predicts a positive Euler characteristic for its mirror. From a degenerate fiber of our family we construct a new rigid Calabi-Yau 3-fold. In an appendix we prove the expansion of the conifold period conjectured in \cite{ES} to hold for all 1-parameter families.</description><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQc1QILilKzEtPVXBLzM3MqVTIT1NwTsxJTMrUjUwsVTDWTcvPSSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC0tLMxNLC2PiVAEAoQ4uIw</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Devlin, Patrick</creator><creator>Nuer, Howard J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130813</creationdate><title>A Strange Family of Calabi-Yau 3-folds</title><author>Devlin, Patrick ; Nuer, Howard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20789964983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Devlin, Patrick</creatorcontrib><creatorcontrib>Nuer, Howard J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devlin, Patrick</au><au>Nuer, Howard J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Strange Family of Calabi-Yau 3-folds</atitle><jtitle>arXiv.org</jtitle><date>2013-08-13</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We study the predictions of mirror symmetry for the 1-parameter family of Calabi-Yau 3-folds \(\tilde{X}\) with hodge numbers \(h^{11}=31,h^{21}=1\) constructed in \cite{BN}. We calculate the Picard-Fuchs differential equation associated to this family, and use it to predict the instanton numbers on the hypothetical mirror. These exhibit a strange vanishing in odd degrees. We also calculate the monodromy action on \(H^3(\tilde{X},\QQ)\) and find that it strangely predicts a positive Euler characteristic for its mirror. From a degenerate fiber of our family we construct a new rigid Calabi-Yau 3-fold. In an appendix we prove the expansion of the conifold period conjectured in \cite{ES} to hold for all 1-parameter families.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078996498
source Free E- Journals
subjects Differential equations
Mathematical analysis
Parameters
title A Strange Family of Calabi-Yau 3-folds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Strange%20Family%20of%20Calabi-Yau%203-folds&rft.jtitle=arXiv.org&rft.au=Devlin,%20Patrick&rft.date=2013-08-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078996498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078996498&rft_id=info:pmid/&rfr_iscdi=true