Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation

The high spatial resolution provided by synchrotron generated infrared (IR) radiation has been used to map spatiotemporal concentration profiles in the diffusion layer around a working electrode. An IR spectroelectrochemcial cell employing an inlaid band electrode has been developed that eliminates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2017-09, Vol.800, p.184-189
Hauptverfasser: Lardner, Michael J., Tu, Kaiyang, Barlow, Burke C., Rosendahl, Scott M., Borondics, Ferenc, Burgess, Ian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 184
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 800
creator Lardner, Michael J.
Tu, Kaiyang
Barlow, Burke C.
Rosendahl, Scott M.
Borondics, Ferenc
Burgess, Ian J.
description The high spatial resolution provided by synchrotron generated infrared (IR) radiation has been used to map spatiotemporal concentration profiles in the diffusion layer around a working electrode. An IR spectroelectrochemcial cell employing an inlaid band electrode has been developed that eliminates geometric issues with previous designs. The new cell was used to follow the diffusion layers produced by the reduction of ferricyanide and the oxidation of hydroquinone. Differences between the diffusion coefficients of ferricyanide and ferrocyanide determined here and the accepted literature are caused by the water-structure forming properties of different supporting electrolytes. The diffusion coefficients of hydroquinone and p-benzoquinone determined by diffusion layer mapping have been shown to be self-consistent with independently determined diffusion coefficients as measured using hydrodynamic linear sweep voltammetry. The consistency of the diffusion coefficients achieved for all species demonstrates that the spectroelectrochemical cell design allows for accurate monitoring of concentration profiles of species within electrochemical diffusion layers. [Display omitted]
doi_str_mv 10.1016/j.jelechem.2016.12.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2078812657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665716307408</els_id><sourcerecordid>2078812657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-acffa09ecc18c2606f1acbe12fe751d455c5a04d5369a43ffb31f312caab9bdb3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BQl4bk3SNm1vyuIXLIigV8M0H25KN1mTdmH_vSmrZ08zA-888D4IXVOSU0L5bZ_3etByo7c5S3dOWU6K5gQtaFMXGat4e5r2qmYZ51V9ji5i7AlhTUPZAn2-TeBGO8Jo9xqDg-EQbcTe4Jk5Bj9zrYQBK2vMFK13eICDDhGnw33heHByE3xKOmydCRC0wgGUTUTvLtGZgSHqq9-5RB-PD--r52z9-vSyul9nsijJmIE0BkirpaSNZJxwQ0F2mjKj64qqsqpkBaRUVcFbKAtjuoKagjIJ0LWd6oolujlyd8F_TzqOovdTSG2iYKSeq6bqKcWPKRl8jEEbsQt2C-EgKBGzS9GLP5didikoE8llerw7PurUYW91EFFa7aRWNiRLQnn7H-IHeKCEOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078812657</pqid></control><display><type>article</type><title>Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lardner, Michael J. ; Tu, Kaiyang ; Barlow, Burke C. ; Rosendahl, Scott M. ; Borondics, Ferenc ; Burgess, Ian J.</creator><creatorcontrib>Lardner, Michael J. ; Tu, Kaiyang ; Barlow, Burke C. ; Rosendahl, Scott M. ; Borondics, Ferenc ; Burgess, Ian J.</creatorcontrib><description>The high spatial resolution provided by synchrotron generated infrared (IR) radiation has been used to map spatiotemporal concentration profiles in the diffusion layer around a working electrode. An IR spectroelectrochemcial cell employing an inlaid band electrode has been developed that eliminates geometric issues with previous designs. The new cell was used to follow the diffusion layers produced by the reduction of ferricyanide and the oxidation of hydroquinone. Differences between the diffusion coefficients of ferricyanide and ferrocyanide determined here and the accepted literature are caused by the water-structure forming properties of different supporting electrolytes. The diffusion coefficients of hydroquinone and p-benzoquinone determined by diffusion layer mapping have been shown to be self-consistent with independently determined diffusion coefficients as measured using hydrodynamic linear sweep voltammetry. The consistency of the diffusion coefficients achieved for all species demonstrates that the spectroelectrochemical cell design allows for accurate monitoring of concentration profiles of species within electrochemical diffusion layers. [Display omitted]</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2016.12.038</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Coefficients ; Diffusion ; Diffusion coefficients ; Diffusion layers ; Electrodes ; Ferricyanide/ferrocyanide ; Hydroquinone ; Hydroquinone/benzoquinone ; Infrared analysis ; Infrared radiation ; Iron cyanides ; Oxidation ; Quantitative analysis ; Quinones ; Spatial resolution ; Species diffusion ; Synchrotron infrared radiation</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2017-09, Vol.800, p.184-189</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-acffa09ecc18c2606f1acbe12fe751d455c5a04d5369a43ffb31f312caab9bdb3</citedby><cites>FETCH-LOGICAL-c340t-acffa09ecc18c2606f1acbe12fe751d455c5a04d5369a43ffb31f312caab9bdb3</cites><orcidid>0000-0001-9611-1431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelechem.2016.12.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Lardner, Michael J.</creatorcontrib><creatorcontrib>Tu, Kaiyang</creatorcontrib><creatorcontrib>Barlow, Burke C.</creatorcontrib><creatorcontrib>Rosendahl, Scott M.</creatorcontrib><creatorcontrib>Borondics, Ferenc</creatorcontrib><creatorcontrib>Burgess, Ian J.</creatorcontrib><title>Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>The high spatial resolution provided by synchrotron generated infrared (IR) radiation has been used to map spatiotemporal concentration profiles in the diffusion layer around a working electrode. An IR spectroelectrochemcial cell employing an inlaid band electrode has been developed that eliminates geometric issues with previous designs. The new cell was used to follow the diffusion layers produced by the reduction of ferricyanide and the oxidation of hydroquinone. Differences between the diffusion coefficients of ferricyanide and ferrocyanide determined here and the accepted literature are caused by the water-structure forming properties of different supporting electrolytes. The diffusion coefficients of hydroquinone and p-benzoquinone determined by diffusion layer mapping have been shown to be self-consistent with independently determined diffusion coefficients as measured using hydrodynamic linear sweep voltammetry. The consistency of the diffusion coefficients achieved for all species demonstrates that the spectroelectrochemical cell design allows for accurate monitoring of concentration profiles of species within electrochemical diffusion layers. [Display omitted]</description><subject>Coefficients</subject><subject>Diffusion</subject><subject>Diffusion coefficients</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Ferricyanide/ferrocyanide</subject><subject>Hydroquinone</subject><subject>Hydroquinone/benzoquinone</subject><subject>Infrared analysis</subject><subject>Infrared radiation</subject><subject>Iron cyanides</subject><subject>Oxidation</subject><subject>Quantitative analysis</subject><subject>Quinones</subject><subject>Spatial resolution</subject><subject>Species diffusion</subject><subject>Synchrotron infrared radiation</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BQl4bk3SNm1vyuIXLIigV8M0H25KN1mTdmH_vSmrZ08zA-888D4IXVOSU0L5bZ_3etByo7c5S3dOWU6K5gQtaFMXGat4e5r2qmYZ51V9ji5i7AlhTUPZAn2-TeBGO8Jo9xqDg-EQbcTe4Jk5Bj9zrYQBK2vMFK13eICDDhGnw33heHByE3xKOmydCRC0wgGUTUTvLtGZgSHqq9-5RB-PD--r52z9-vSyul9nsijJmIE0BkirpaSNZJxwQ0F2mjKj64qqsqpkBaRUVcFbKAtjuoKagjIJ0LWd6oolujlyd8F_TzqOovdTSG2iYKSeq6bqKcWPKRl8jEEbsQt2C-EgKBGzS9GLP5didikoE8llerw7PurUYW91EFFa7aRWNiRLQnn7H-IHeKCEOg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lardner, Michael J.</creator><creator>Tu, Kaiyang</creator><creator>Barlow, Burke C.</creator><creator>Rosendahl, Scott M.</creator><creator>Borondics, Ferenc</creator><creator>Burgess, Ian J.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9611-1431</orcidid></search><sort><creationdate>20170901</creationdate><title>Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation</title><author>Lardner, Michael J. ; Tu, Kaiyang ; Barlow, Burke C. ; Rosendahl, Scott M. ; Borondics, Ferenc ; Burgess, Ian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-acffa09ecc18c2606f1acbe12fe751d455c5a04d5369a43ffb31f312caab9bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coefficients</topic><topic>Diffusion</topic><topic>Diffusion coefficients</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Ferricyanide/ferrocyanide</topic><topic>Hydroquinone</topic><topic>Hydroquinone/benzoquinone</topic><topic>Infrared analysis</topic><topic>Infrared radiation</topic><topic>Iron cyanides</topic><topic>Oxidation</topic><topic>Quantitative analysis</topic><topic>Quinones</topic><topic>Spatial resolution</topic><topic>Species diffusion</topic><topic>Synchrotron infrared radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lardner, Michael J.</creatorcontrib><creatorcontrib>Tu, Kaiyang</creatorcontrib><creatorcontrib>Barlow, Burke C.</creatorcontrib><creatorcontrib>Rosendahl, Scott M.</creatorcontrib><creatorcontrib>Borondics, Ferenc</creatorcontrib><creatorcontrib>Burgess, Ian J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lardner, Michael J.</au><au>Tu, Kaiyang</au><au>Barlow, Burke C.</au><au>Rosendahl, Scott M.</au><au>Borondics, Ferenc</au><au>Burgess, Ian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>800</volume><spage>184</spage><epage>189</epage><pages>184-189</pages><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>The high spatial resolution provided by synchrotron generated infrared (IR) radiation has been used to map spatiotemporal concentration profiles in the diffusion layer around a working electrode. An IR spectroelectrochemcial cell employing an inlaid band electrode has been developed that eliminates geometric issues with previous designs. The new cell was used to follow the diffusion layers produced by the reduction of ferricyanide and the oxidation of hydroquinone. Differences between the diffusion coefficients of ferricyanide and ferrocyanide determined here and the accepted literature are caused by the water-structure forming properties of different supporting electrolytes. The diffusion coefficients of hydroquinone and p-benzoquinone determined by diffusion layer mapping have been shown to be self-consistent with independently determined diffusion coefficients as measured using hydrodynamic linear sweep voltammetry. The consistency of the diffusion coefficients achieved for all species demonstrates that the spectroelectrochemical cell design allows for accurate monitoring of concentration profiles of species within electrochemical diffusion layers. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2016.12.038</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9611-1431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2017-09, Vol.800, p.184-189
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2078812657
source ScienceDirect Journals (5 years ago - present)
subjects Coefficients
Diffusion
Diffusion coefficients
Diffusion layers
Electrodes
Ferricyanide/ferrocyanide
Hydroquinone
Hydroquinone/benzoquinone
Infrared analysis
Infrared radiation
Iron cyanides
Oxidation
Quantitative analysis
Quinones
Spatial resolution
Species diffusion
Synchrotron infrared radiation
title Quantitative analysis of electrochemical diffusion layers using synchrotron infrared radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20electrochemical%20diffusion%20layers%20using%20synchrotron%20infrared%20radiation&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Lardner,%20Michael%20J.&rft.date=2017-09-01&rft.volume=800&rft.spage=184&rft.epage=189&rft.pages=184-189&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2016.12.038&rft_dat=%3Cproquest_cross%3E2078812657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078812657&rft_id=info:pmid/&rft_els_id=S1572665716307408&rfr_iscdi=true