Laminations in the language of leaves

Thurston defined invariant laminations, i.e. collections of chords of the unit circle \(S^1\) (called \emph{leaves}) that are pairwise disjoint inside the open unit disk and satisfy a few dynamical properties. To be directly associated to a polynomial, a lamination has to be generated by an equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2012-01
Hauptverfasser: Blokh, Alexander M, Mimbs, Debra, Oversteegen, Lex G, Valkenburg, Kirsten I S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Blokh, Alexander M
Mimbs, Debra
Oversteegen, Lex G
Valkenburg, Kirsten I S
description Thurston defined invariant laminations, i.e. collections of chords of the unit circle \(S^1\) (called \emph{leaves}) that are pairwise disjoint inside the open unit disk and satisfy a few dynamical properties. To be directly associated to a polynomial, a lamination has to be generated by an equivalence relation with specific properties on \(S^1\); then it is called a \emph{q-lamination}. Since not all laminations are q-laminations, then from the point of view of studying polynomials the most interesting are those of them which are limits of q-laminations. In this paper we introduce an alternative definition of an invariant lamination, which involves only conditions on the leaves (and avoids gap invariance). The new class of laminations is slightly smaller than that defined by Thurston and is closed. We use this notion to elucidate the connection between invariant laminations and invariant equivalence relations on \(S^1\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078591248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078591248</sourcerecordid><originalsourceid>FETCH-proquest_journals_20785912483</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UnMzcxLLMnMzytWyMxTKMlIVchJzEsvTUxPVchPU8hJTSxLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MLU0tDIxMLY-JUAQDwqi7W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078591248</pqid></control><display><type>article</type><title>Laminations in the language of leaves</title><source>Free E- Journals</source><creator>Blokh, Alexander M ; Mimbs, Debra ; Oversteegen, Lex G ; Valkenburg, Kirsten I S</creator><creatorcontrib>Blokh, Alexander M ; Mimbs, Debra ; Oversteegen, Lex G ; Valkenburg, Kirsten I S</creatorcontrib><description>Thurston defined invariant laminations, i.e. collections of chords of the unit circle \(S^1\) (called \emph{leaves}) that are pairwise disjoint inside the open unit disk and satisfy a few dynamical properties. To be directly associated to a polynomial, a lamination has to be generated by an equivalence relation with specific properties on \(S^1\); then it is called a \emph{q-lamination}. Since not all laminations are q-laminations, then from the point of view of studying polynomials the most interesting are those of them which are limits of q-laminations. In this paper we introduce an alternative definition of an invariant lamination, which involves only conditions on the leaves (and avoids gap invariance). The new class of laminations is slightly smaller than that defined by Thurston and is closed. We use this notion to elucidate the connection between invariant laminations and invariant equivalence relations on \(S^1\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chords (geometry) ; Equivalence ; Invariants ; Polynomials</subject><ispartof>arXiv.org, 2012-01</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Blokh, Alexander M</creatorcontrib><creatorcontrib>Mimbs, Debra</creatorcontrib><creatorcontrib>Oversteegen, Lex G</creatorcontrib><creatorcontrib>Valkenburg, Kirsten I S</creatorcontrib><title>Laminations in the language of leaves</title><title>arXiv.org</title><description>Thurston defined invariant laminations, i.e. collections of chords of the unit circle \(S^1\) (called \emph{leaves}) that are pairwise disjoint inside the open unit disk and satisfy a few dynamical properties. To be directly associated to a polynomial, a lamination has to be generated by an equivalence relation with specific properties on \(S^1\); then it is called a \emph{q-lamination}. Since not all laminations are q-laminations, then from the point of view of studying polynomials the most interesting are those of them which are limits of q-laminations. In this paper we introduce an alternative definition of an invariant lamination, which involves only conditions on the leaves (and avoids gap invariance). The new class of laminations is slightly smaller than that defined by Thurston and is closed. We use this notion to elucidate the connection between invariant laminations and invariant equivalence relations on \(S^1\).</description><subject>Chords (geometry)</subject><subject>Equivalence</subject><subject>Invariants</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9UnMzcxLLMnMzytWyMxTKMlIVchJzEsvTUxPVchPU8hJTSxLLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjA3MLU0tDIxMLY-JUAQDwqi7W</recordid><startdate>20120112</startdate><enddate>20120112</enddate><creator>Blokh, Alexander M</creator><creator>Mimbs, Debra</creator><creator>Oversteegen, Lex G</creator><creator>Valkenburg, Kirsten I S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120112</creationdate><title>Laminations in the language of leaves</title><author>Blokh, Alexander M ; Mimbs, Debra ; Oversteegen, Lex G ; Valkenburg, Kirsten I S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20785912483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chords (geometry)</topic><topic>Equivalence</topic><topic>Invariants</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Blokh, Alexander M</creatorcontrib><creatorcontrib>Mimbs, Debra</creatorcontrib><creatorcontrib>Oversteegen, Lex G</creatorcontrib><creatorcontrib>Valkenburg, Kirsten I S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blokh, Alexander M</au><au>Mimbs, Debra</au><au>Oversteegen, Lex G</au><au>Valkenburg, Kirsten I S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Laminations in the language of leaves</atitle><jtitle>arXiv.org</jtitle><date>2012-01-12</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Thurston defined invariant laminations, i.e. collections of chords of the unit circle \(S^1\) (called \emph{leaves}) that are pairwise disjoint inside the open unit disk and satisfy a few dynamical properties. To be directly associated to a polynomial, a lamination has to be generated by an equivalence relation with specific properties on \(S^1\); then it is called a \emph{q-lamination}. Since not all laminations are q-laminations, then from the point of view of studying polynomials the most interesting are those of them which are limits of q-laminations. In this paper we introduce an alternative definition of an invariant lamination, which involves only conditions on the leaves (and avoids gap invariance). The new class of laminations is slightly smaller than that defined by Thurston and is closed. We use this notion to elucidate the connection between invariant laminations and invariant equivalence relations on \(S^1\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078591248
source Free E- Journals
subjects Chords (geometry)
Equivalence
Invariants
Polynomials
title Laminations in the language of leaves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Laminations%20in%20the%20language%20of%20leaves&rft.jtitle=arXiv.org&rft.au=Blokh,%20Alexander%20M&rft.date=2012-01-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078591248%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078591248&rft_id=info:pmid/&rfr_iscdi=true