Weighted discrete hypergroups
Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hy...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alaghmandan, Mahmood Samei, Ebrahim |
description | Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078530128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078530128</sourcerecordid><originalsourceid>FETCH-proquest_journals_20785301283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDU_NTM8oSU1RSMksTi5KLUlVyKgsSC1KL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC1NjA0MjC2PiVAEAkEksdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078530128</pqid></control><display><type>article</type><title>Weighted discrete hypergroups</title><source>Free E- Journals</source><creator>Alaghmandan, Mahmood ; Samei, Ebrahim</creator><creatorcontrib>Alaghmandan, Mahmood ; Samei, Ebrahim</creatorcontrib><description>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Fourier analysis ; Harmonic analysis ; Isomorphism ; Mathematical analysis ; Polynomials ; Regularity</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alaghmandan, Mahmood</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><title>Weighted discrete hypergroups</title><title>arXiv.org</title><description>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</description><subject>Algebra</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDU_NTM8oSU1RSMksTi5KLUlVyKgsSC1KL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC1NjA0MjC2PiVAEAkEksdg</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Alaghmandan, Mahmood</creator><creator>Samei, Ebrahim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160115</creationdate><title>Weighted discrete hypergroups</title><author>Alaghmandan, Mahmood ; Samei, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20785301283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Alaghmandan, Mahmood</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaghmandan, Mahmood</au><au>Samei, Ebrahim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weighted discrete hypergroups</atitle><jtitle>arXiv.org</jtitle><date>2016-01-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078530128 |
source | Free E- Journals |
subjects | Algebra Fourier analysis Harmonic analysis Isomorphism Mathematical analysis Polynomials Regularity |
title | Weighted discrete hypergroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weighted%20discrete%20hypergroups&rft.jtitle=arXiv.org&rft.au=Alaghmandan,%20Mahmood&rft.date=2016-01-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078530128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078530128&rft_id=info:pmid/&rfr_iscdi=true |