Weighted discrete hypergroups

Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-01
Hauptverfasser: Alaghmandan, Mahmood, Samei, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alaghmandan, Mahmood
Samei, Ebrahim
description Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078530128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078530128</sourcerecordid><originalsourceid>FETCH-proquest_journals_20785301283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDU_NTM8oSU1RSMksTi5KLUlVyKgsSC1KL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC1NjA0MjC2PiVAEAkEksdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078530128</pqid></control><display><type>article</type><title>Weighted discrete hypergroups</title><source>Free E- Journals</source><creator>Alaghmandan, Mahmood ; Samei, Ebrahim</creator><creatorcontrib>Alaghmandan, Mahmood ; Samei, Ebrahim</creatorcontrib><description>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Fourier analysis ; Harmonic analysis ; Isomorphism ; Mathematical analysis ; Polynomials ; Regularity</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alaghmandan, Mahmood</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><title>Weighted discrete hypergroups</title><title>arXiv.org</title><description>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</description><subject>Algebra</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDU_NTM8oSU1RSMksTi5KLUlVyKgsSC1KL8ovLSjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzC1NjA0MjC2PiVAEAkEksdg</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Alaghmandan, Mahmood</creator><creator>Samei, Ebrahim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160115</creationdate><title>Weighted discrete hypergroups</title><author>Alaghmandan, Mahmood ; Samei, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20785301283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Alaghmandan, Mahmood</creatorcontrib><creatorcontrib>Samei, Ebrahim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaghmandan, Mahmood</au><au>Samei, Ebrahim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weighted discrete hypergroups</atitle><jtitle>arXiv.org</jtitle><date>2016-01-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the generalizations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078530128
source Free E- Journals
subjects Algebra
Fourier analysis
Harmonic analysis
Isomorphism
Mathematical analysis
Polynomials
Regularity
title Weighted discrete hypergroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weighted%20discrete%20hypergroups&rft.jtitle=arXiv.org&rft.au=Alaghmandan,%20Mahmood&rft.date=2016-01-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078530128%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078530128&rft_id=info:pmid/&rfr_iscdi=true