Finite-Time Boundedness and H∞ Control for Affine Switched Systems
For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018, Vol.2018 (2018), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Han, Lu Jiang, Lin Qiu, Cunyong |
description | For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H∞ finite-time boundedness problem, in which the H∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with H∞ performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results. |
doi_str_mv | 10.1155/2018/2309395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2078444780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078444780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-38f4fa6863d700934f31300cb947169bdd3636f7157a3b06f948d6d980bf33e93</originalsourceid><addsrcrecordid>eNqF0M9KAzEQBvAgCtbqzbMseNS1SSabP8darRUKHlrB27K7SWhKm63JltI38Cl8OJ_ELVvw6Gnm8OOb4UPomuAHQrJsQDGRAwpYgcpOUI9kHNKMMHHa7piylFD4OEcXMS4xpiQjsoeexs67xqRztzbJY7312mhvYkwKr5PJz9d3Mqp9E-pVYuuQDK113iSznWuqhdHJbB8bs46X6MwWq2iujrOP3sfP89Eknb69vI6G07SiIJoUpGW24JKDFrh9klkggHFVKiYIV6XWwIFbQTJRQIm5VUxqrpXEpQUwCvrotsvdhPpza2KTL-tt8O3JnGIhGWNC4lbdd6oKdYzB2HwT3LoI-5zg_NBTfugpP_bU8ruOL5zXxc79p286bVpjbPGnKeYEFPwCaaJv6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078444780</pqid></control><display><type>article</type><title>Finite-Time Boundedness and H∞ Control for Affine Switched Systems</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Han, Lu ; Jiang, Lin ; Qiu, Cunyong</creator><contributor>Xie, Guangming</contributor><creatorcontrib>Han, Lu ; Jiang, Lin ; Qiu, Cunyong ; Xie, Guangming</creatorcontrib><description>For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H∞ finite-time boundedness problem, in which the H∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with H∞ performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/2309395</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Control theory ; Controllers ; Dynamical systems ; Economic models ; Equilibrium ; H-infinity control ; Investigations ; Stability analysis ; System theory ; Time dependence</subject><ispartof>Mathematical problems in engineering, 2018, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Lu Han et al.</rights><rights>Copyright © 2018 Lu Han et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-38f4fa6863d700934f31300cb947169bdd3636f7157a3b06f948d6d980bf33e93</citedby><cites>FETCH-LOGICAL-c237t-38f4fa6863d700934f31300cb947169bdd3636f7157a3b06f948d6d980bf33e93</cites><orcidid>0000-0002-1573-2912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Xie, Guangming</contributor><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Qiu, Cunyong</creatorcontrib><title>Finite-Time Boundedness and H∞ Control for Affine Switched Systems</title><title>Mathematical problems in engineering</title><description>For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H∞ finite-time boundedness problem, in which the H∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with H∞ performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results.</description><subject>Control theory</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Economic models</subject><subject>Equilibrium</subject><subject>H-infinity control</subject><subject>Investigations</subject><subject>Stability analysis</subject><subject>System theory</subject><subject>Time dependence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9KAzEQBvAgCtbqzbMseNS1SSabP8darRUKHlrB27K7SWhKm63JltI38Cl8OJ_ELVvw6Gnm8OOb4UPomuAHQrJsQDGRAwpYgcpOUI9kHNKMMHHa7piylFD4OEcXMS4xpiQjsoeexs67xqRztzbJY7312mhvYkwKr5PJz9d3Mqp9E-pVYuuQDK113iSznWuqhdHJbB8bs46X6MwWq2iujrOP3sfP89Eknb69vI6G07SiIJoUpGW24JKDFrh9klkggHFVKiYIV6XWwIFbQTJRQIm5VUxqrpXEpQUwCvrotsvdhPpza2KTL-tt8O3JnGIhGWNC4lbdd6oKdYzB2HwT3LoI-5zg_NBTfugpP_bU8ruOL5zXxc79p286bVpjbPGnKeYEFPwCaaJv6Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Han, Lu</creator><creator>Jiang, Lin</creator><creator>Qiu, Cunyong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1573-2912</orcidid></search><sort><creationdate>2018</creationdate><title>Finite-Time Boundedness and H∞ Control for Affine Switched Systems</title><author>Han, Lu ; Jiang, Lin ; Qiu, Cunyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-38f4fa6863d700934f31300cb947169bdd3636f7157a3b06f948d6d980bf33e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Control theory</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Economic models</topic><topic>Equilibrium</topic><topic>H-infinity control</topic><topic>Investigations</topic><topic>Stability analysis</topic><topic>System theory</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Qiu, Cunyong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lu</au><au>Jiang, Lin</au><au>Qiu, Cunyong</au><au>Xie, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Boundedness and H∞ Control for Affine Switched Systems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H∞ finite-time boundedness problem, in which the H∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with H∞ performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/2309395</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1573-2912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018, Vol.2018 (2018), p.1-15 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2078444780 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Control theory Controllers Dynamical systems Economic models Equilibrium H-infinity control Investigations Stability analysis System theory Time dependence |
title | Finite-Time Boundedness and H∞ Control for Affine Switched Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Boundedness%20and%20H%E2%88%9E%20Control%20for%20Affine%20Switched%20Systems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Han,%20Lu&rft.date=2018&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/2309395&rft_dat=%3Cproquest_cross%3E2078444780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078444780&rft_id=info:pmid/&rfr_iscdi=true |