Stability of an upwind Petrov Galerkin discretization of convection diffusion equations

We study a numerical method for convection diffusion equations, in the regime of small viscosity. It can be described as an exponentially fitted conforming Petrov-Galerkin method. We identify norms for which we have both continuity and an inf-sup condition, which are uniform in mesh-width and viscos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-02
Hauptverfasser: Christiansen, Snorre H, Halvorsen, Tore G, Sørensen, Torquil M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Christiansen, Snorre H
Halvorsen, Tore G
Sørensen, Torquil M
description We study a numerical method for convection diffusion equations, in the regime of small viscosity. It can be described as an exponentially fitted conforming Petrov-Galerkin method. We identify norms for which we have both continuity and an inf-sup condition, which are uniform in mesh-width and viscosity, up to a logarithm, as long as the viscosity is smaller than the mesh-width or the crosswind diffusion is smaller than the streamline diffusion. The analysis allows for the formation of a boundary layer.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078376154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078376154</sourcerecordid><originalsourceid>FETCH-proquest_journals_20783761543</originalsourceid><addsrcrecordid>eNqNyskKwjAYBOAgCBbtOwQ8F9Kk211cjoKCxxLTBP5akjZLRZ9eW3wATzPDfAsUUcbSpMooXaHYuZYQQouS5jmL0O3i-R068C9sFOYah_4JusFn6a0Z8ZF30j5A4wacsNLDm3swerLC6FGKeTWgVHBTk0OYgdugpeKdk_Ev12h72F93p6S3ZgjS-bo1wervVVNSVqws0jxj_6kP0IdCqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078376154</pqid></control><display><type>article</type><title>Stability of an upwind Petrov Galerkin discretization of convection diffusion equations</title><source>Free E- Journals</source><creator>Christiansen, Snorre H ; Halvorsen, Tore G ; Sørensen, Torquil M</creator><creatorcontrib>Christiansen, Snorre H ; Halvorsen, Tore G ; Sørensen, Torquil M</creatorcontrib><description>We study a numerical method for convection diffusion equations, in the regime of small viscosity. It can be described as an exponentially fitted conforming Petrov-Galerkin method. We identify norms for which we have both continuity and an inf-sup condition, which are uniform in mesh-width and viscosity, up to a logarithm, as long as the viscosity is smaller than the mesh-width or the crosswind diffusion is smaller than the streamline diffusion. The analysis allows for the formation of a boundary layer.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary layers ; Convection ; Crosswinds ; Diffusion layers ; Galerkin method ; Mathematical analysis ; Norms ; Numerical methods ; Viscosity</subject><ispartof>arXiv.org, 2016-02</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Christiansen, Snorre H</creatorcontrib><creatorcontrib>Halvorsen, Tore G</creatorcontrib><creatorcontrib>Sørensen, Torquil M</creatorcontrib><title>Stability of an upwind Petrov Galerkin discretization of convection diffusion equations</title><title>arXiv.org</title><description>We study a numerical method for convection diffusion equations, in the regime of small viscosity. It can be described as an exponentially fitted conforming Petrov-Galerkin method. We identify norms for which we have both continuity and an inf-sup condition, which are uniform in mesh-width and viscosity, up to a logarithm, as long as the viscosity is smaller than the mesh-width or the crosswind diffusion is smaller than the streamline diffusion. The analysis allows for the formation of a boundary layer.</description><subject>Boundary layers</subject><subject>Convection</subject><subject>Crosswinds</subject><subject>Diffusion layers</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Numerical methods</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyskKwjAYBOAgCBbtOwQ8F9Kk211cjoKCxxLTBP5akjZLRZ9eW3wATzPDfAsUUcbSpMooXaHYuZYQQouS5jmL0O3i-R068C9sFOYah_4JusFn6a0Z8ZF30j5A4wacsNLDm3swerLC6FGKeTWgVHBTk0OYgdugpeKdk_Ev12h72F93p6S3ZgjS-bo1wervVVNSVqws0jxj_6kP0IdCqA</recordid><startdate>20160222</startdate><enddate>20160222</enddate><creator>Christiansen, Snorre H</creator><creator>Halvorsen, Tore G</creator><creator>Sørensen, Torquil M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160222</creationdate><title>Stability of an upwind Petrov Galerkin discretization of convection diffusion equations</title><author>Christiansen, Snorre H ; Halvorsen, Tore G ; Sørensen, Torquil M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20783761543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary layers</topic><topic>Convection</topic><topic>Crosswinds</topic><topic>Diffusion layers</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Numerical methods</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Snorre H</creatorcontrib><creatorcontrib>Halvorsen, Tore G</creatorcontrib><creatorcontrib>Sørensen, Torquil M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Snorre H</au><au>Halvorsen, Tore G</au><au>Sørensen, Torquil M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability of an upwind Petrov Galerkin discretization of convection diffusion equations</atitle><jtitle>arXiv.org</jtitle><date>2016-02-22</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We study a numerical method for convection diffusion equations, in the regime of small viscosity. It can be described as an exponentially fitted conforming Petrov-Galerkin method. We identify norms for which we have both continuity and an inf-sup condition, which are uniform in mesh-width and viscosity, up to a logarithm, as long as the viscosity is smaller than the mesh-width or the crosswind diffusion is smaller than the streamline diffusion. The analysis allows for the formation of a boundary layer.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078376154
source Free E- Journals
subjects Boundary layers
Convection
Crosswinds
Diffusion layers
Galerkin method
Mathematical analysis
Norms
Numerical methods
Viscosity
title Stability of an upwind Petrov Galerkin discretization of convection diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20of%20an%20upwind%20Petrov%20Galerkin%20discretization%20of%20convection%20diffusion%20equations&rft.jtitle=arXiv.org&rft.au=Christiansen,%20Snorre%20H&rft.date=2016-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078376154%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078376154&rft_id=info:pmid/&rfr_iscdi=true