KAM for the nonlinear beam equation

In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-04
Hauptverfasser: Eliasson, L Hakan, Grébert, Benoît, Kuksin, Sergei B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eliasson, L Hakan
Grébert, Benoît
Kuksin, Sergei B
description In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078239657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078239657</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782396573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9nb0VUjLL1IoyUhVyMvPy8nMS00sUkhKTcxVSC0sTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCyNjSzNTc2PiVAEAVwgtzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078239657</pqid></control><display><type>article</type><title>KAM for the nonlinear beam equation</title><source>Free E- Journals</source><creator>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</creator><creatorcontrib>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</creatorcontrib><description>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplitudes ; Invariants ; Linear equations ; Nonlinear equations ; Toruses</subject><ispartof>arXiv.org, 2016-04</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Eliasson, L Hakan</creatorcontrib><creatorcontrib>Grébert, Benoît</creatorcontrib><creatorcontrib>Kuksin, Sergei B</creatorcontrib><title>KAM for the nonlinear beam equation</title><title>arXiv.org</title><description>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</description><subject>Amplitudes</subject><subject>Invariants</subject><subject>Linear equations</subject><subject>Nonlinear equations</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9nb0VUjLL1IoyUhVyMvPy8nMS00sUkhKTcxVSC0sTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCyNjSzNTc2PiVAEAVwgtzA</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>Eliasson, L Hakan</creator><creator>Grébert, Benoît</creator><creator>Kuksin, Sergei B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160406</creationdate><title>KAM for the nonlinear beam equation</title><author>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782396573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitudes</topic><topic>Invariants</topic><topic>Linear equations</topic><topic>Nonlinear equations</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Eliasson, L Hakan</creatorcontrib><creatorcontrib>Grébert, Benoît</creatorcontrib><creatorcontrib>Kuksin, Sergei B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliasson, L Hakan</au><au>Grébert, Benoît</au><au>Kuksin, Sergei B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KAM for the nonlinear beam equation</atitle><jtitle>arXiv.org</jtitle><date>2016-04-06</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078239657
source Free E- Journals
subjects Amplitudes
Invariants
Linear equations
Nonlinear equations
Toruses
title KAM for the nonlinear beam equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KAM%20for%20the%20nonlinear%20beam%20equation&rft.jtitle=arXiv.org&rft.au=Eliasson,%20L%20Hakan&rft.date=2016-04-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078239657%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078239657&rft_id=info:pmid/&rfr_iscdi=true