KAM for the nonlinear beam equation
In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Eliasson, L Hakan Grébert, Benoît Kuksin, Sergei B |
description | In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078239657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078239657</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782396573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9nb0VUjLL1IoyUhVyMvPy8nMS00sUkhKTcxVSC0sTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCyNjSzNTc2PiVAEAVwgtzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078239657</pqid></control><display><type>article</type><title>KAM for the nonlinear beam equation</title><source>Free E- Journals</source><creator>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</creator><creatorcontrib>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</creatorcontrib><description>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplitudes ; Invariants ; Linear equations ; Nonlinear equations ; Toruses</subject><ispartof>arXiv.org, 2016-04</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Eliasson, L Hakan</creatorcontrib><creatorcontrib>Grébert, Benoît</creatorcontrib><creatorcontrib>Kuksin, Sergei B</creatorcontrib><title>KAM for the nonlinear beam equation</title><title>arXiv.org</title><description>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</description><subject>Amplitudes</subject><subject>Invariants</subject><subject>Linear equations</subject><subject>Nonlinear equations</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9nb0VUjLL1IoyUhVyMvPy8nMS00sUkhKTcxVSC0sTSzJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzCyNjSzNTc2PiVAEAVwgtzA</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>Eliasson, L Hakan</creator><creator>Grébert, Benoît</creator><creator>Kuksin, Sergei B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160406</creationdate><title>KAM for the nonlinear beam equation</title><author>Eliasson, L Hakan ; Grébert, Benoît ; Kuksin, Sergei B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782396573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitudes</topic><topic>Invariants</topic><topic>Linear equations</topic><topic>Nonlinear equations</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Eliasson, L Hakan</creatorcontrib><creatorcontrib>Grébert, Benoît</creatorcontrib><creatorcontrib>Kuksin, Sergei B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliasson, L Hakan</au><au>Grébert, Benoît</au><au>Kuksin, Sergei B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KAM for the nonlinear beam equation</atitle><jtitle>arXiv.org</jtitle><date>2016-04-06</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta^2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}^d, \qquad \qquad (*) $$ where \(G(x,u)=u^4+ O(u^5)\). Namely, we show that, for generic \(m\), many of the small amplitude invariant finite dimensional tori of the linear equation \((*)_{G=0}\), written as the system $$ u_t=-v,\quad v_t=\Delta^2 u+mu, $$ persist as invariant tori of the nonlinear equation \((*)\), re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of \((*)\). If \(d\ge2\), then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078239657 |
source | Free E- Journals |
subjects | Amplitudes Invariants Linear equations Nonlinear equations Toruses |
title | KAM for the nonlinear beam equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KAM%20for%20the%20nonlinear%20beam%20equation&rft.jtitle=arXiv.org&rft.au=Eliasson,%20L%20Hakan&rft.date=2016-04-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078239657%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078239657&rft_id=info:pmid/&rfr_iscdi=true |