Cancer and electromagnetic radiation therapy: Quo Vadis?
In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons deliver...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help the improvement of treatment efficacy and/or normal tissue toxicity. Additionally, recent studies support that laser technology progresses could revolutionize cancer proton therapy, by reducing the cost of the needed installations. The aim of this review is to present some laser-based future objectives for cancer radiation therapy, aiming to address the relevant advances in the ionizing and non-ionizing radiation therapy, i.e. protons and heavy ions therapy, as well as photodynamic targeted and molecular therapies. |
---|---|
ISSN: | 2331-8422 |