Integral homology of real isotropic and odd orthogonal Grassmannians
We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classificatio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lambert, Jordan Lonardo Rabelo |
description | We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078160057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078160057</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781600573</originalsourceid><addsrcrecordid>eNqNi8sKgzAUREOhUGn9h0DXQkzUuO97372EGjWiufbeuOjfN4t-QBfDwJkzG5ZIpfKsLqTcsZRoFELISsuyVAk7P3ywPZqJDzDDBP2HQ8fRRuAIAsLiXtz4lkMbg2GAHnwcb2iIZuO9M54ObNuZiWz66z07Xi_P0z1bEN6rpdCMsGK8USOFrvNKiFKr_6wvdnU7Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078160057</pqid></control><display><type>article</type><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><source>Free E- Journals</source><creator>Lambert, Jordan ; Lonardo Rabelo</creator><creatorcontrib>Lambert, Jordan ; Lonardo Rabelo</creatorcontrib><description>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary maps ; Coefficients ; Combinatorial analysis ; Homology ; Lie groups ; Permutations</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lambert, Jordan</creatorcontrib><creatorcontrib>Lonardo Rabelo</creatorcontrib><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><title>arXiv.org</title><description>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</description><subject>Boundary maps</subject><subject>Coefficients</subject><subject>Combinatorial analysis</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgzAUREOhUGn9h0DXQkzUuO97372EGjWiufbeuOjfN4t-QBfDwJkzG5ZIpfKsLqTcsZRoFELISsuyVAk7P3ywPZqJDzDDBP2HQ8fRRuAIAsLiXtz4lkMbg2GAHnwcb2iIZuO9M54ObNuZiWz66z07Xi_P0z1bEN6rpdCMsGK8USOFrvNKiFKr_6wvdnU7Bg</recordid><startdate>20200726</startdate><enddate>20200726</enddate><creator>Lambert, Jordan</creator><creator>Lonardo Rabelo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200726</creationdate><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><author>Lambert, Jordan ; Lonardo Rabelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781600573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary maps</topic><topic>Coefficients</topic><topic>Combinatorial analysis</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Jordan</creatorcontrib><creatorcontrib>Lonardo Rabelo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Jordan</au><au>Lonardo Rabelo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Integral homology of real isotropic and odd orthogonal Grassmannians</atitle><jtitle>arXiv.org</jtitle><date>2020-07-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078160057 |
source | Free E- Journals |
subjects | Boundary maps Coefficients Combinatorial analysis Homology Lie groups Permutations |
title | Integral homology of real isotropic and odd orthogonal Grassmannians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Integral%20homology%20of%20real%20isotropic%20and%20odd%20orthogonal%20Grassmannians&rft.jtitle=arXiv.org&rft.au=Lambert,%20Jordan&rft.date=2020-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078160057%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078160057&rft_id=info:pmid/&rfr_iscdi=true |