Integral homology of real isotropic and odd orthogonal Grassmannians

We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-07
Hauptverfasser: Lambert, Jordan, Lonardo Rabelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lambert, Jordan
Lonardo Rabelo
description We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078160057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078160057</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781600573</originalsourceid><addsrcrecordid>eNqNi8sKgzAUREOhUGn9h0DXQkzUuO97372EGjWiufbeuOjfN4t-QBfDwJkzG5ZIpfKsLqTcsZRoFELISsuyVAk7P3ywPZqJDzDDBP2HQ8fRRuAIAsLiXtz4lkMbg2GAHnwcb2iIZuO9M54ObNuZiWz66z07Xi_P0z1bEN6rpdCMsGK8USOFrvNKiFKr_6wvdnU7Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078160057</pqid></control><display><type>article</type><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><source>Free E- Journals</source><creator>Lambert, Jordan ; Lonardo Rabelo</creator><creatorcontrib>Lambert, Jordan ; Lonardo Rabelo</creatorcontrib><description>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary maps ; Coefficients ; Combinatorial analysis ; Homology ; Lie groups ; Permutations</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lambert, Jordan</creatorcontrib><creatorcontrib>Lonardo Rabelo</creatorcontrib><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><title>arXiv.org</title><description>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</description><subject>Boundary maps</subject><subject>Coefficients</subject><subject>Combinatorial analysis</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgzAUREOhUGn9h0DXQkzUuO97372EGjWiufbeuOjfN4t-QBfDwJkzG5ZIpfKsLqTcsZRoFELISsuyVAk7P3ywPZqJDzDDBP2HQ8fRRuAIAsLiXtz4lkMbg2GAHnwcb2iIZuO9M54ObNuZiWz66z07Xi_P0z1bEN6rpdCMsGK8USOFrvNKiFKr_6wvdnU7Bg</recordid><startdate>20200726</startdate><enddate>20200726</enddate><creator>Lambert, Jordan</creator><creator>Lonardo Rabelo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200726</creationdate><title>Integral homology of real isotropic and odd orthogonal Grassmannians</title><author>Lambert, Jordan ; Lonardo Rabelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781600573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary maps</topic><topic>Coefficients</topic><topic>Combinatorial analysis</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Jordan</creatorcontrib><creatorcontrib>Lonardo Rabelo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Jordan</au><au>Lonardo Rabelo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Integral homology of real isotropic and odd orthogonal Grassmannians</atitle><jtitle>arXiv.org</jtitle><date>2020-07-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We obtain a combinatorial expression for the coefficients of the boundary map of real isotropic and odd orthogonal Grassmannians providing a natural generalization of the formulas already obtained for Lagrangian and maximal isotropic Grassmannians. The results are given in terms of the classification into four types of covering pairs among the Schubert cells when identified with signed \(k\)-Grassmannian permutations. It turns out that these coefficients only depend on the positions changed over each pair of permutations. As an application, we give an orientability criterion, exhibit a symmetry of these coefficients and, compute low-dimensional homology groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078160057
source Free E- Journals
subjects Boundary maps
Coefficients
Combinatorial analysis
Homology
Lie groups
Permutations
title Integral homology of real isotropic and odd orthogonal Grassmannians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Integral%20homology%20of%20real%20isotropic%20and%20odd%20orthogonal%20Grassmannians&rft.jtitle=arXiv.org&rft.au=Lambert,%20Jordan&rft.date=2020-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078160057%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078160057&rft_id=info:pmid/&rfr_iscdi=true