Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations

In the following paper we will consider Navier-Stokes problem and it's interpretation by hyperbolic waves, focusing on wave propagation. We will begin with solution for linear waves, then present problem for non-linear waves. Later we will derive for numerical solution using PDE's. Also we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-01
Hauptverfasser: Arakelyan, Erik, Serobyan, Aram, Jilavyan, Narek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arakelyan, Erik
Serobyan, Aram
Jilavyan, Narek
description In the following paper we will consider Navier-Stokes problem and it's interpretation by hyperbolic waves, focusing on wave propagation. We will begin with solution for linear waves, then present problem for non-linear waves. Later we will derive for numerical solution using PDE's. Also we will design a Matlab program to solve and simulate wave propagation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078099752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078099752</sourcerecordid><originalsourceid>FETCH-proquest_journals_20780997523</originalsourceid><addsrcrecordid>eNqNysEKgjAcgPERBEn5Dn_oLKyZqV1T8ZJBeZelsyZz080Fvn0FPUCn7_D9Fsghvr_zoj0hK-Qa02GMySEkQeA76JoJyxtIZkl7Xhs4q4YJLh9whPLJoLA907ymAm5K2IkrCZcWSAIFfXGmIZ8Hpu9K8BrS0dIvMBu0bKkwzP11jbZZWp5yb9BqtMxMVaeslp9VERxGOI7DgPj_qTdMYj6m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078099752</pqid></control><display><type>article</type><title>Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations</title><source>Free E- Journals</source><creator>Arakelyan, Erik ; Serobyan, Aram ; Jilavyan, Narek</creator><creatorcontrib>Arakelyan, Erik ; Serobyan, Aram ; Jilavyan, Narek</creatorcontrib><description>In the following paper we will consider Navier-Stokes problem and it's interpretation by hyperbolic waves, focusing on wave propagation. We will begin with solution for linear waves, then present problem for non-linear waves. Later we will derive for numerical solution using PDE's. Also we will design a Matlab program to solve and simulate wave propagation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Computer simulation ; Fluid flow ; Mathematical models ; Partial differential equations ; Propagation ; Two dimensional models ; Wave propagation</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arakelyan, Erik</creatorcontrib><creatorcontrib>Serobyan, Aram</creatorcontrib><creatorcontrib>Jilavyan, Narek</creatorcontrib><title>Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations</title><title>arXiv.org</title><description>In the following paper we will consider Navier-Stokes problem and it's interpretation by hyperbolic waves, focusing on wave propagation. We will begin with solution for linear waves, then present problem for non-linear waves. Later we will derive for numerical solution using PDE's. Also we will design a Matlab program to solve and simulate wave propagation.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Two dimensional models</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgjAcgPERBEn5Dn_oLKyZqV1T8ZJBeZelsyZz080Fvn0FPUCn7_D9Fsghvr_zoj0hK-Qa02GMySEkQeA76JoJyxtIZkl7Xhs4q4YJLh9whPLJoLA907ymAm5K2IkrCZcWSAIFfXGmIZ8Hpu9K8BrS0dIvMBu0bKkwzP11jbZZWp5yb9BqtMxMVaeslp9VERxGOI7DgPj_qTdMYj6m</recordid><startdate>20160121</startdate><enddate>20160121</enddate><creator>Arakelyan, Erik</creator><creator>Serobyan, Aram</creator><creator>Jilavyan, Narek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160121</creationdate><title>Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations</title><author>Arakelyan, Erik ; Serobyan, Aram ; Jilavyan, Narek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20780997523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Two dimensional models</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Arakelyan, Erik</creatorcontrib><creatorcontrib>Serobyan, Aram</creatorcontrib><creatorcontrib>Jilavyan, Narek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arakelyan, Erik</au><au>Serobyan, Aram</au><au>Jilavyan, Narek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations</atitle><jtitle>arXiv.org</jtitle><date>2016-01-21</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In the following paper we will consider Navier-Stokes problem and it's interpretation by hyperbolic waves, focusing on wave propagation. We will begin with solution for linear waves, then present problem for non-linear waves. Later we will derive for numerical solution using PDE's. Also we will design a Matlab program to solve and simulate wave propagation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078099752
source Free E- Journals
subjects Computational fluid dynamics
Computer simulation
Fluid flow
Mathematical models
Partial differential equations
Propagation
Two dimensional models
Wave propagation
title Fluid Dynamics Modeling : The Numerical Solution Of 2D Navier Hyperbolic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fluid%20Dynamics%20Modeling%20:%20The%20Numerical%20Solution%20Of%202D%20Navier%20Hyperbolic%20Equations&rft.jtitle=arXiv.org&rft.au=Arakelyan,%20Erik&rft.date=2016-01-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078099752%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078099752&rft_id=info:pmid/&rfr_iscdi=true