TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-03
Hauptverfasser: Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S, Davis, Andy, Dean, Jeffrey, Matthieu Devin, Ghemawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser, Lukasz, Manjunath Kudlur, Levenberg, Josh, Mane, Dan, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viegas, Fernanda, Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, Zheng, Xiaoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abadi, Martín
Agarwal, Ashish
Barham, Paul
Brevdo, Eugene
Chen, Zhifeng
Citro, Craig
Corrado, Greg S
Davis, Andy
Dean, Jeffrey
Matthieu Devin
Ghemawat, Sanjay
Goodfellow, Ian
Harp, Andrew
Irving, Geoffrey
Isard, Michael
Jia, Yangqing
Jozefowicz, Rafal
Kaiser, Lukasz
Manjunath Kudlur
Levenberg, Josh
Mane, Dan
Monga, Rajat
Moore, Sherry
Murray, Derek
Olah, Chris
Schuster, Mike
Shlens, Jonathon
Steiner, Benoit
Sutskever, Ilya
Talwar, Kunal
Tucker, Paul
Vanhoucke, Vincent
Vasudevan, Vijay
Viegas, Fernanda
Vinyals, Oriol
Warden, Pete
Wattenberg, Martin
Wicke, Martin
Yu, Yuan
Zheng, Xiaoqiang
description TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078019164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078019164</sourcerecordid><originalsourceid>FETCH-proquest_journals_20780191643</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivEMTZ5LS8qerShhggp1UvGIJttrbxvj2OvgATmf4zoIEXIg4KhLOVyREnBhjPMt5moqANB1oNLaczWtPa2lHiNpBzkAbOdyUBlqDtFrpkRpNK3BgzQgajEd6VOisOnsHF9q-0cEdN2R5lTNC-OuabMtTd6iihzVPD-j6yXirv9Rzlhcs3sVZIv67PoUGPeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078019164</pqid></control><display><type>article</type><title>TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems</title><source>Free E- Journals</source><creator>Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eugene ; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S ; Davis, Andy ; Dean, Jeffrey ; Matthieu Devin ; Ghemawat, Sanjay ; Goodfellow, Ian ; Harp, Andrew ; Irving, Geoffrey ; Isard, Michael ; Jia, Yangqing ; Jozefowicz, Rafal ; Kaiser, Lukasz ; Manjunath Kudlur ; Levenberg, Josh ; Mane, Dan ; Monga, Rajat ; Moore, Sherry ; Murray, Derek ; Olah, Chris ; Schuster, Mike ; Shlens, Jonathon ; Steiner, Benoit ; Sutskever, Ilya ; Talwar, Kunal ; Tucker, Paul ; Vanhoucke, Vincent ; Vasudevan, Vijay ; Viegas, Fernanda ; Vinyals, Oriol ; Warden, Pete ; Wattenberg, Martin ; Wicke, Martin ; Yu, Yuan ; Zheng, Xiaoqiang</creator><creatorcontrib>Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eugene ; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S ; Davis, Andy ; Dean, Jeffrey ; Matthieu Devin ; Ghemawat, Sanjay ; Goodfellow, Ian ; Harp, Andrew ; Irving, Geoffrey ; Isard, Michael ; Jia, Yangqing ; Jozefowicz, Rafal ; Kaiser, Lukasz ; Manjunath Kudlur ; Levenberg, Josh ; Mane, Dan ; Monga, Rajat ; Moore, Sherry ; Murray, Derek ; Olah, Chris ; Schuster, Mike ; Shlens, Jonathon ; Steiner, Benoit ; Sutskever, Ilya ; Talwar, Kunal ; Tucker, Paul ; Vanhoucke, Vincent ; Vasudevan, Vijay ; Viegas, Fernanda ; Vinyals, Oriol ; Warden, Pete ; Wattenberg, Martin ; Wicke, Martin ; Yu, Yuan ; Zheng, Xiaoqiang</creatorcontrib><description>TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Computation ; Computer networks ; Computer vision ; Electronic devices ; Information retrieval ; Machine learning ; Natural language processing ; Neural networks ; Robotics ; Speech recognition ; Tablet computers</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Abadi, Martín</creatorcontrib><creatorcontrib>Agarwal, Ashish</creatorcontrib><creatorcontrib>Barham, Paul</creatorcontrib><creatorcontrib>Brevdo, Eugene</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Citro, Craig</creatorcontrib><creatorcontrib>Corrado, Greg S</creatorcontrib><creatorcontrib>Davis, Andy</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Matthieu Devin</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Goodfellow, Ian</creatorcontrib><creatorcontrib>Harp, Andrew</creatorcontrib><creatorcontrib>Irving, Geoffrey</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Jia, Yangqing</creatorcontrib><creatorcontrib>Jozefowicz, Rafal</creatorcontrib><creatorcontrib>Kaiser, Lukasz</creatorcontrib><creatorcontrib>Manjunath Kudlur</creatorcontrib><creatorcontrib>Levenberg, Josh</creatorcontrib><creatorcontrib>Mane, Dan</creatorcontrib><creatorcontrib>Monga, Rajat</creatorcontrib><creatorcontrib>Moore, Sherry</creatorcontrib><creatorcontrib>Murray, Derek</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Schuster, Mike</creatorcontrib><creatorcontrib>Shlens, Jonathon</creatorcontrib><creatorcontrib>Steiner, Benoit</creatorcontrib><creatorcontrib>Sutskever, Ilya</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><creatorcontrib>Tucker, Paul</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><creatorcontrib>Vasudevan, Vijay</creatorcontrib><creatorcontrib>Viegas, Fernanda</creatorcontrib><creatorcontrib>Vinyals, Oriol</creatorcontrib><creatorcontrib>Warden, Pete</creatorcontrib><creatorcontrib>Wattenberg, Martin</creatorcontrib><creatorcontrib>Wicke, Martin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Zheng, Xiaoqiang</creatorcontrib><title>TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems</title><title>arXiv.org</title><description>TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Electronic devices</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Speech recognition</subject><subject>Tablet computers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivEMTZ5LS8qerShhggp1UvGIJttrbxvj2OvgATmf4zoIEXIg4KhLOVyREnBhjPMt5moqANB1oNLaczWtPa2lHiNpBzkAbOdyUBlqDtFrpkRpNK3BgzQgajEd6VOisOnsHF9q-0cEdN2R5lTNC-OuabMtTd6iihzVPD-j6yXirv9Rzlhcs3sVZIv67PoUGPeU</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Abadi, Martín</creator><creator>Agarwal, Ashish</creator><creator>Barham, Paul</creator><creator>Brevdo, Eugene</creator><creator>Chen, Zhifeng</creator><creator>Citro, Craig</creator><creator>Corrado, Greg S</creator><creator>Davis, Andy</creator><creator>Dean, Jeffrey</creator><creator>Matthieu Devin</creator><creator>Ghemawat, Sanjay</creator><creator>Goodfellow, Ian</creator><creator>Harp, Andrew</creator><creator>Irving, Geoffrey</creator><creator>Isard, Michael</creator><creator>Jia, Yangqing</creator><creator>Jozefowicz, Rafal</creator><creator>Kaiser, Lukasz</creator><creator>Manjunath Kudlur</creator><creator>Levenberg, Josh</creator><creator>Mane, Dan</creator><creator>Monga, Rajat</creator><creator>Moore, Sherry</creator><creator>Murray, Derek</creator><creator>Olah, Chris</creator><creator>Schuster, Mike</creator><creator>Shlens, Jonathon</creator><creator>Steiner, Benoit</creator><creator>Sutskever, Ilya</creator><creator>Talwar, Kunal</creator><creator>Tucker, Paul</creator><creator>Vanhoucke, Vincent</creator><creator>Vasudevan, Vijay</creator><creator>Viegas, Fernanda</creator><creator>Vinyals, Oriol</creator><creator>Warden, Pete</creator><creator>Wattenberg, Martin</creator><creator>Wicke, Martin</creator><creator>Yu, Yuan</creator><creator>Zheng, Xiaoqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160316</creationdate><title>TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems</title><author>Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eugene ; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S ; Davis, Andy ; Dean, Jeffrey ; Matthieu Devin ; Ghemawat, Sanjay ; Goodfellow, Ian ; Harp, Andrew ; Irving, Geoffrey ; Isard, Michael ; Jia, Yangqing ; Jozefowicz, Rafal ; Kaiser, Lukasz ; Manjunath Kudlur ; Levenberg, Josh ; Mane, Dan ; Monga, Rajat ; Moore, Sherry ; Murray, Derek ; Olah, Chris ; Schuster, Mike ; Shlens, Jonathon ; Steiner, Benoit ; Sutskever, Ilya ; Talwar, Kunal ; Tucker, Paul ; Vanhoucke, Vincent ; Vasudevan, Vijay ; Viegas, Fernanda ; Vinyals, Oriol ; Warden, Pete ; Wattenberg, Martin ; Wicke, Martin ; Yu, Yuan ; Zheng, Xiaoqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20780191643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Electronic devices</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Speech recognition</topic><topic>Tablet computers</topic><toplevel>online_resources</toplevel><creatorcontrib>Abadi, Martín</creatorcontrib><creatorcontrib>Agarwal, Ashish</creatorcontrib><creatorcontrib>Barham, Paul</creatorcontrib><creatorcontrib>Brevdo, Eugene</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Citro, Craig</creatorcontrib><creatorcontrib>Corrado, Greg S</creatorcontrib><creatorcontrib>Davis, Andy</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Matthieu Devin</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Goodfellow, Ian</creatorcontrib><creatorcontrib>Harp, Andrew</creatorcontrib><creatorcontrib>Irving, Geoffrey</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Jia, Yangqing</creatorcontrib><creatorcontrib>Jozefowicz, Rafal</creatorcontrib><creatorcontrib>Kaiser, Lukasz</creatorcontrib><creatorcontrib>Manjunath Kudlur</creatorcontrib><creatorcontrib>Levenberg, Josh</creatorcontrib><creatorcontrib>Mane, Dan</creatorcontrib><creatorcontrib>Monga, Rajat</creatorcontrib><creatorcontrib>Moore, Sherry</creatorcontrib><creatorcontrib>Murray, Derek</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Schuster, Mike</creatorcontrib><creatorcontrib>Shlens, Jonathon</creatorcontrib><creatorcontrib>Steiner, Benoit</creatorcontrib><creatorcontrib>Sutskever, Ilya</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><creatorcontrib>Tucker, Paul</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><creatorcontrib>Vasudevan, Vijay</creatorcontrib><creatorcontrib>Viegas, Fernanda</creatorcontrib><creatorcontrib>Vinyals, Oriol</creatorcontrib><creatorcontrib>Warden, Pete</creatorcontrib><creatorcontrib>Wattenberg, Martin</creatorcontrib><creatorcontrib>Wicke, Martin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Zheng, Xiaoqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadi, Martín</au><au>Agarwal, Ashish</au><au>Barham, Paul</au><au>Brevdo, Eugene</au><au>Chen, Zhifeng</au><au>Citro, Craig</au><au>Corrado, Greg S</au><au>Davis, Andy</au><au>Dean, Jeffrey</au><au>Matthieu Devin</au><au>Ghemawat, Sanjay</au><au>Goodfellow, Ian</au><au>Harp, Andrew</au><au>Irving, Geoffrey</au><au>Isard, Michael</au><au>Jia, Yangqing</au><au>Jozefowicz, Rafal</au><au>Kaiser, Lukasz</au><au>Manjunath Kudlur</au><au>Levenberg, Josh</au><au>Mane, Dan</au><au>Monga, Rajat</au><au>Moore, Sherry</au><au>Murray, Derek</au><au>Olah, Chris</au><au>Schuster, Mike</au><au>Shlens, Jonathon</au><au>Steiner, Benoit</au><au>Sutskever, Ilya</au><au>Talwar, Kunal</au><au>Tucker, Paul</au><au>Vanhoucke, Vincent</au><au>Vasudevan, Vijay</au><au>Viegas, Fernanda</au><au>Vinyals, Oriol</au><au>Warden, Pete</au><au>Wattenberg, Martin</au><au>Wicke, Martin</au><au>Yu, Yuan</au><au>Zheng, Xiaoqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems</atitle><jtitle>arXiv.org</jtitle><date>2016-03-16</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078019164
source Free E- Journals
subjects Algorithms
Artificial intelligence
Computation
Computer networks
Computer vision
Electronic devices
Information retrieval
Machine learning
Natural language processing
Neural networks
Robotics
Speech recognition
Tablet computers
title TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TensorFlow:%20Large-Scale%20Machine%20Learning%20on%20Heterogeneous%20Distributed%20Systems&rft.jtitle=arXiv.org&rft.au=Abadi,%20Mart%C3%ADn&rft.date=2016-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078019164%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078019164&rft_id=info:pmid/&rfr_iscdi=true