"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs
In this paper we study a filtered "K-theoretical" analog of a graded algebra associated to any loopless graph G which was introduced in \cite{PS}. We show that two such filtered algebras are isomorphic if and only if their graphs are isomorphic. We also study a large family of filtered gen...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nenashev, G Shapiro, B |
description | In this paper we study a filtered "K-theoretical" analog of a graded algebra associated to any loopless graph G which was introduced in \cite{PS}. We show that two such filtered algebras are isomorphic if and only if their graphs are isomorphic. We also study a large family of filtered generalizations of the latter graded algebra which includes the above "K-theoretical" analog. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077968178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077968178</sourcerecordid><originalsourceid>FETCH-proquest_journals_20779681783</originalsourceid><addsrcrecordid>eNqNzEELgjAYgOERBEn5H4adB3NLZ-dIgi5B3WXW3GbiZ_tmv78O_YBO7-XhXZBESJmzaifEiqSIPedclEoUhUxInZ1ZdAaCif6eUT3qASyFjl4A4-if8GZXpycfgOrBmjZo-vAY_Whnj84gtUFPDjdk2ekBTfrrmmzr4-1wYlOA12wwNj3M4TvHRnCl9mWVq0r-pz6n7Dtp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077968178</pqid></control><display><type>article</type><title>"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs</title><source>Free E- Journals</source><creator>Nenashev, G ; Shapiro, B</creator><creatorcontrib>Nenashev, G ; Shapiro, B</creatorcontrib><description>In this paper we study a filtered "K-theoretical" analog of a graded algebra associated to any loopless graph G which was introduced in \cite{PS}. We show that two such filtered algebras are isomorphic if and only if their graphs are isomorphic. We also study a large family of filtered generalizations of the latter graded algebra which includes the above "K-theoretical" analog.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Graphs</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nenashev, G</creatorcontrib><creatorcontrib>Shapiro, B</creatorcontrib><title>"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs</title><title>arXiv.org</title><description>In this paper we study a filtered "K-theoretical" analog of a graded algebra associated to any loopless graph G which was introduced in \cite{PS}. We show that two such filtered algebras are isomorphic if and only if their graphs are isomorphic. We also study a large family of filtered generalizations of the latter graded algebra which includes the above "K-theoretical" analog.</description><subject>Algebra</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzEELgjAYgOERBEn5H4adB3NLZ-dIgi5B3WXW3GbiZ_tmv78O_YBO7-XhXZBESJmzaifEiqSIPedclEoUhUxInZ1ZdAaCif6eUT3qASyFjl4A4-if8GZXpycfgOrBmjZo-vAY_Whnj84gtUFPDjdk2ekBTfrrmmzr4-1wYlOA12wwNj3M4TvHRnCl9mWVq0r-pz6n7Dtp</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Nenashev, G</creator><creator>Shapiro, B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160315</creationdate><title>"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs</title><author>Nenashev, G ; Shapiro, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20779681783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Nenashev, G</creatorcontrib><creatorcontrib>Shapiro, B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nenashev, G</au><au>Shapiro, B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs</atitle><jtitle>arXiv.org</jtitle><date>2016-03-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In this paper we study a filtered "K-theoretical" analog of a graded algebra associated to any loopless graph G which was introduced in \cite{PS}. We show that two such filtered algebras are isomorphic if and only if their graphs are isomorphic. We also study a large family of filtered generalizations of the latter graded algebra which includes the above "K-theoretical" analog.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2077968178 |
source | Free E- Journals |
subjects | Algebra Graphs |
title | "K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=%22K-theoretic%22%20analog%20of%20Postnikov-Shapiro%20algebra%20distinguishes%20graphs&rft.jtitle=arXiv.org&rft.au=Nenashev,%20G&rft.date=2016-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077968178%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077968178&rft_id=info:pmid/&rfr_iscdi=true |