Learning Efficient Algorithms with Hierarchical Attentive Memory
In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improv...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andrychowicz, Marcin Kurach, Karol |
description | In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improvement over the standard attention mechanism that requires O(n) operations, where n is the size of the memory. We show that an LSTM network augmented with HAM can learn algorithms for problems like merging, sorting or binary searching from pure input-output examples. In particular, it learns to sort n numbers in time O(n log n) and generalizes well to input sequences much longer than the ones seen during the training. We also show that HAM can be trained to act like classic data structures: a stack, a FIFO queue and a priority queue. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077956625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077956625</sourcerecordid><originalsourceid>FETCH-proquest_journals_20779566253</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhbU1rVsShoe6dZchn_qJbvVtFv37PPQDOj2H912wSCq1Sw57KVcs9r4XQsg0k1qriJ2uYMiibXnRNFgj2MDzoXWEoRs9f8_wEoEM1R3WZuB5CPODL-A3GB19NmzZmMFD_HPNtpfifi6TB7nnBD5UvZvIzqmSIsuOOk2lVv9dX1klOWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077956625</pqid></control><display><type>article</type><title>Learning Efficient Algorithms with Hierarchical Attentive Memory</title><source>Free E- Journals</source><creator>Andrychowicz, Marcin ; Kurach, Karol</creator><creatorcontrib>Andrychowicz, Marcin ; Kurach, Karol</creatorcontrib><description>In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improvement over the standard attention mechanism that requires O(n) operations, where n is the size of the memory. We show that an LSTM network augmented with HAM can learn algorithms for problems like merging, sorting or binary searching from pure input-output examples. In particular, it learns to sort n numbers in time O(n log n) and generalizes well to input sequences much longer than the ones seen during the training. We also show that HAM can be trained to act like classic data structures: a stack, a FIFO queue and a priority queue.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Computer architecture ; Computer memory ; Data structures ; Machine learning ; Neural networks ; Queues ; Sorting algorithms</subject><ispartof>arXiv.org, 2016-02</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Andrychowicz, Marcin</creatorcontrib><creatorcontrib>Kurach, Karol</creatorcontrib><title>Learning Efficient Algorithms with Hierarchical Attentive Memory</title><title>arXiv.org</title><description>In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improvement over the standard attention mechanism that requires O(n) operations, where n is the size of the memory. We show that an LSTM network augmented with HAM can learn algorithms for problems like merging, sorting or binary searching from pure input-output examples. In particular, it learns to sort n numbers in time O(n log n) and generalizes well to input sequences much longer than the ones seen during the training. We also show that HAM can be trained to act like classic data structures: a stack, a FIFO queue and a priority queue.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Computer memory</subject><subject>Data structures</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Queues</subject><subject>Sorting algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhbU1rVsShoe6dZchn_qJbvVtFv37PPQDOj2H912wSCq1Sw57KVcs9r4XQsg0k1qriJ2uYMiibXnRNFgj2MDzoXWEoRs9f8_wEoEM1R3WZuB5CPODL-A3GB19NmzZmMFD_HPNtpfifi6TB7nnBD5UvZvIzqmSIsuOOk2lVv9dX1klOWY</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>Andrychowicz, Marcin</creator><creator>Kurach, Karol</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160223</creationdate><title>Learning Efficient Algorithms with Hierarchical Attentive Memory</title><author>Andrychowicz, Marcin ; Kurach, Karol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20779566253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Computer memory</topic><topic>Data structures</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Queues</topic><topic>Sorting algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrychowicz, Marcin</creatorcontrib><creatorcontrib>Kurach, Karol</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrychowicz, Marcin</au><au>Kurach, Karol</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Efficient Algorithms with Hierarchical Attentive Memory</atitle><jtitle>arXiv.org</jtitle><date>2016-02-23</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improvement over the standard attention mechanism that requires O(n) operations, where n is the size of the memory. We show that an LSTM network augmented with HAM can learn algorithms for problems like merging, sorting or binary searching from pure input-output examples. In particular, it learns to sort n numbers in time O(n log n) and generalizes well to input sequences much longer than the ones seen during the training. We also show that HAM can be trained to act like classic data structures: a stack, a FIFO queue and a priority queue.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2077956625 |
source | Free E- Journals |
subjects | Algorithms Classification Computer architecture Computer memory Data structures Machine learning Neural networks Queues Sorting algorithms |
title | Learning Efficient Algorithms with Hierarchical Attentive Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Efficient%20Algorithms%20with%20Hierarchical%20Attentive%20Memory&rft.jtitle=arXiv.org&rft.au=Andrychowicz,%20Marcin&rft.date=2016-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077956625%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077956625&rft_id=info:pmid/&rfr_iscdi=true |