An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching

•A unsupervised, iterative 2D point-set registration algorithm for unlabeled data is proposed.•Analytical derivation of the optimal alignment parameters for two point-sets lacking one-to-one correspondence.•Algorithm is used for minutia-based fingerprint matching, where it is shown to be computation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2017-12, Vol.100, p.137-143
Hauptverfasser: Pasha Hosseinbor, A., Zhdanov, Renat, Ushveridze, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue
container_start_page 137
container_title Pattern recognition letters
container_volume 100
creator Pasha Hosseinbor, A.
Zhdanov, Renat
Ushveridze, Alexander
description •A unsupervised, iterative 2D point-set registration algorithm for unlabeled data is proposed.•Analytical derivation of the optimal alignment parameters for two point-sets lacking one-to-one correspondence.•Algorithm is used for minutia-based fingerprint matching, where it is shown to be computationally efficient and accurate. An unsupervised, iterative 2D point-set registration algorithm for unlabeled data and based on linear least squares is proposed, and subsequently utilized for minutia-based fingerprint matching. The matcher considers all possible minutia pairings and iteratively aligns the two sets until the number of minutia pairs does not exceed the maximum number of allowable one-to-one pairings. The first alignment establishes a region of overlap between the two minutia sets, which is then (iteratively) refined by each successive alignment. After each alignment, minutia pairs that exhibit weak correspondence are discarded. The process is repeated until the number of remaining pairs no longer exceeds the maximum number of allowable one-to-one pairings. The proposed algorithm is tested on both the FVC2000 and FVC2002 databases, and the results indicate that the proposed matcher is both effective and efficient for fingerprint authentication; it is fast and consciously utilizes as few computationally expensive mathematical functions (e.g. trigonometric, exponential) as possible. In addition to the proposed matcher, another contribution of the paper is the analytical derivation of the least squares solution for the optimal alignment parameters for two point-sets lacking one-to-one correspondence.
doi_str_mv 10.1016/j.patrec.2017.10.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2077579002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865517303719</els_id><sourcerecordid>2077579002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5925481be45dadb58867e4d8695517384934ca0aabb0213c7e617ccaf8c1137b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw8Bz12TJmlSD8KyfsKCFz2HNJ3uZuk2NUkF_71Z6tnTMDPvMx8vQjeULCmh1d1-OZoUwC5LQmUuLQmpT9CCKlkWknF-ihZZJgtVCXGOLmLcE0IqVqsFmlYDnoY4jRC-XYQWl4949G5IRYSEA2xdTMEk5wds-q0PLu0OuPMhQ71poM9EByZNAWYs3uPVOPbOzkzyuHPDFsIYchMfTLK7nF-hs870Ea7_4iX6fH76WL8Wm_eXt_VqU1jGeCpEXQquaANctKZthFKVBN6qqhaCSqZ4zbg1xJimISVlVkJFpbWmU5ZSJht2iW7nuWPwXxPEpPd-CkNeqUsipZA1IWVW8Vllg48xQKfztQcTfjQl-miw3uvZYH00-FjNBmfsYcYgf_DtIOhoHQwWWpelSbfe_T_gF1O6h_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077579002</pqid></control><display><type>article</type><title>An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pasha Hosseinbor, A. ; Zhdanov, Renat ; Ushveridze, Alexander</creator><creatorcontrib>Pasha Hosseinbor, A. ; Zhdanov, Renat ; Ushveridze, Alexander</creatorcontrib><description>•A unsupervised, iterative 2D point-set registration algorithm for unlabeled data is proposed.•Analytical derivation of the optimal alignment parameters for two point-sets lacking one-to-one correspondence.•Algorithm is used for minutia-based fingerprint matching, where it is shown to be computationally efficient and accurate. An unsupervised, iterative 2D point-set registration algorithm for unlabeled data and based on linear least squares is proposed, and subsequently utilized for minutia-based fingerprint matching. The matcher considers all possible minutia pairings and iteratively aligns the two sets until the number of minutia pairs does not exceed the maximum number of allowable one-to-one pairings. The first alignment establishes a region of overlap between the two minutia sets, which is then (iteratively) refined by each successive alignment. After each alignment, minutia pairs that exhibit weak correspondence are discarded. The process is repeated until the number of remaining pairs no longer exceeds the maximum number of allowable one-to-one pairings. The proposed algorithm is tested on both the FVC2000 and FVC2002 databases, and the results indicate that the proposed matcher is both effective and efficient for fingerprint authentication; it is fast and consciously utilizes as few computationally expensive mathematical functions (e.g. trigonometric, exponential) as possible. In addition to the proposed matcher, another contribution of the paper is the analytical derivation of the least squares solution for the optimal alignment parameters for two point-sets lacking one-to-one correspondence.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2017.10.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Alignment ; Data processing ; Fingerprint ; Fingerprint verification ; Fingerprinting ; Iterative methods ; Learning ; Least squares ; Linear least squares ; Matching ; Mathematical analysis ; Minutia matching ; Pattern recognition ; Point pattern matching ; Point-set registration ; Unsupervised learning</subject><ispartof>Pattern recognition letters, 2017-12, Vol.100, p.137-143</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5925481be45dadb58867e4d8695517384934ca0aabb0213c7e617ccaf8c1137b3</citedby><cites>FETCH-LOGICAL-c334t-5925481be45dadb58867e4d8695517384934ca0aabb0213c7e617ccaf8c1137b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2017.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Pasha Hosseinbor, A.</creatorcontrib><creatorcontrib>Zhdanov, Renat</creatorcontrib><creatorcontrib>Ushveridze, Alexander</creatorcontrib><title>An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching</title><title>Pattern recognition letters</title><description>•A unsupervised, iterative 2D point-set registration algorithm for unlabeled data is proposed.•Analytical derivation of the optimal alignment parameters for two point-sets lacking one-to-one correspondence.•Algorithm is used for minutia-based fingerprint matching, where it is shown to be computationally efficient and accurate. An unsupervised, iterative 2D point-set registration algorithm for unlabeled data and based on linear least squares is proposed, and subsequently utilized for minutia-based fingerprint matching. The matcher considers all possible minutia pairings and iteratively aligns the two sets until the number of minutia pairs does not exceed the maximum number of allowable one-to-one pairings. The first alignment establishes a region of overlap between the two minutia sets, which is then (iteratively) refined by each successive alignment. After each alignment, minutia pairs that exhibit weak correspondence are discarded. The process is repeated until the number of remaining pairs no longer exceeds the maximum number of allowable one-to-one pairings. The proposed algorithm is tested on both the FVC2000 and FVC2002 databases, and the results indicate that the proposed matcher is both effective and efficient for fingerprint authentication; it is fast and consciously utilizes as few computationally expensive mathematical functions (e.g. trigonometric, exponential) as possible. In addition to the proposed matcher, another contribution of the paper is the analytical derivation of the least squares solution for the optimal alignment parameters for two point-sets lacking one-to-one correspondence.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Data processing</subject><subject>Fingerprint</subject><subject>Fingerprint verification</subject><subject>Fingerprinting</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Least squares</subject><subject>Linear least squares</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Minutia matching</subject><subject>Pattern recognition</subject><subject>Point pattern matching</subject><subject>Point-set registration</subject><subject>Unsupervised learning</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw8Bz12TJmlSD8KyfsKCFz2HNJ3uZuk2NUkF_71Z6tnTMDPvMx8vQjeULCmh1d1-OZoUwC5LQmUuLQmpT9CCKlkWknF-ihZZJgtVCXGOLmLcE0IqVqsFmlYDnoY4jRC-XYQWl4949G5IRYSEA2xdTMEk5wds-q0PLu0OuPMhQ71poM9EByZNAWYs3uPVOPbOzkzyuHPDFsIYchMfTLK7nF-hs870Ea7_4iX6fH76WL8Wm_eXt_VqU1jGeCpEXQquaANctKZthFKVBN6qqhaCSqZ4zbg1xJimISVlVkJFpbWmU5ZSJht2iW7nuWPwXxPEpPd-CkNeqUsipZA1IWVW8Vllg48xQKfztQcTfjQl-miw3uvZYH00-FjNBmfsYcYgf_DtIOhoHQwWWpelSbfe_T_gF1O6h_U</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Pasha Hosseinbor, A.</creator><creator>Zhdanov, Renat</creator><creator>Ushveridze, Alexander</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171201</creationdate><title>An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching</title><author>Pasha Hosseinbor, A. ; Zhdanov, Renat ; Ushveridze, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5925481be45dadb58867e4d8695517384934ca0aabb0213c7e617ccaf8c1137b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Data processing</topic><topic>Fingerprint</topic><topic>Fingerprint verification</topic><topic>Fingerprinting</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Least squares</topic><topic>Linear least squares</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Minutia matching</topic><topic>Pattern recognition</topic><topic>Point pattern matching</topic><topic>Point-set registration</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasha Hosseinbor, A.</creatorcontrib><creatorcontrib>Zhdanov, Renat</creatorcontrib><creatorcontrib>Ushveridze, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasha Hosseinbor, A.</au><au>Zhdanov, Renat</au><au>Ushveridze, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching</atitle><jtitle>Pattern recognition letters</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>100</volume><spage>137</spage><epage>143</epage><pages>137-143</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•A unsupervised, iterative 2D point-set registration algorithm for unlabeled data is proposed.•Analytical derivation of the optimal alignment parameters for two point-sets lacking one-to-one correspondence.•Algorithm is used for minutia-based fingerprint matching, where it is shown to be computationally efficient and accurate. An unsupervised, iterative 2D point-set registration algorithm for unlabeled data and based on linear least squares is proposed, and subsequently utilized for minutia-based fingerprint matching. The matcher considers all possible minutia pairings and iteratively aligns the two sets until the number of minutia pairs does not exceed the maximum number of allowable one-to-one pairings. The first alignment establishes a region of overlap between the two minutia sets, which is then (iteratively) refined by each successive alignment. After each alignment, minutia pairs that exhibit weak correspondence are discarded. The process is repeated until the number of remaining pairs no longer exceeds the maximum number of allowable one-to-one pairings. The proposed algorithm is tested on both the FVC2000 and FVC2002 databases, and the results indicate that the proposed matcher is both effective and efficient for fingerprint authentication; it is fast and consciously utilizes as few computationally expensive mathematical functions (e.g. trigonometric, exponential) as possible. In addition to the proposed matcher, another contribution of the paper is the analytical derivation of the least squares solution for the optimal alignment parameters for two point-sets lacking one-to-one correspondence.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2017.10.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2017-12, Vol.100, p.137-143
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2077579002
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Alignment
Data processing
Fingerprint
Fingerprint verification
Fingerprinting
Iterative methods
Learning
Least squares
Linear least squares
Matching
Mathematical analysis
Minutia matching
Pattern recognition
Point pattern matching
Point-set registration
Unsupervised learning
title An unsupervised 2D point-set registration algorithm for unlabeled feature points: Application to fingerprint matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsupervised%202D%20point-set%20registration%20algorithm%20for%20unlabeled%20feature%20points:%20Application%20to%20fingerprint%20matching&rft.jtitle=Pattern%20recognition%20letters&rft.au=Pasha%20Hosseinbor,%20A.&rft.date=2017-12-01&rft.volume=100&rft.spage=137&rft.epage=143&rft.pages=137-143&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2017.10.009&rft_dat=%3Cproquest_cross%3E2077579002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077579002&rft_id=info:pmid/&rft_els_id=S0167865517303719&rfr_iscdi=true