Solvability for semisimple Hopf algebras via integrals

We use integrals of left coideal subalgebras to develop Harmonic analysis for semisimple Hopf algebras. We show how \(N^*,\) the space of functional on \(N,\) is embedded in \(H^*.\) We define a bilinear form on \(N^*\) and show that irreducible \(N\)-characters are orthogonal with respect to that f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-04
Hauptverfasser: Cohen, M, Westreich, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cohen, M
Westreich, S
description We use integrals of left coideal subalgebras to develop Harmonic analysis for semisimple Hopf algebras. We show how \(N^*,\) the space of functional on \(N,\) is embedded in \(H^*.\) We define a bilinear form on \(N^*\) and show that irreducible \(N\)-characters are orthogonal with respect to that form. We then give an explicit formula for induced characters of \(N\) and show how the induced characters are embedded in \(R(H).\) In the second part we give an intrinsic definition for solvable semisimple Hopf algebras via left coideal subalgebras and their integrals. We show how this definition generalizes solvability for finite groups. In particular, commutative and nilpotent Hopf algebras are solvable. We finally prove an analogue of Burnside theorem: A semisimple quasitriangular Hopf algebras of dimension \(p^aq^b\) is solvable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077112979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077112979</sourcerecordid><originalsourceid>FETCH-proquest_journals_20771129793</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhfktXZ6j8F53mfBNJtOtfVPo3-ehH9DpObzvjmUgZVlcLwAHlhONQgioFVSVzFj99G7VvXU2fbjxkRNOluwUHPLWB8O1G7CPmvhqNbdzwiFqRye2NxuY_zyy8-P-urVFiP69IKVu9Euct9SBUKosoVGN_O_6Av26Nb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077112979</pqid></control><display><type>article</type><title>Solvability for semisimple Hopf algebras via integrals</title><source>Free E- Journals</source><creator>Cohen, M ; Westreich, S</creator><creatorcontrib>Cohen, M ; Westreich, S</creatorcontrib><description>We use integrals of left coideal subalgebras to develop Harmonic analysis for semisimple Hopf algebras. We show how \(N^*,\) the space of functional on \(N,\) is embedded in \(H^*.\) We define a bilinear form on \(N^*\) and show that irreducible \(N\)-characters are orthogonal with respect to that form. We then give an explicit formula for induced characters of \(N\) and show how the induced characters are embedded in \(R(H).\) In the second part we give an intrinsic definition for solvable semisimple Hopf algebras via left coideal subalgebras and their integrals. We show how this definition generalizes solvability for finite groups. In particular, commutative and nilpotent Hopf algebras are solvable. We finally prove an analogue of Burnside theorem: A semisimple quasitriangular Hopf algebras of dimension \(p^aq^b\) is solvable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Fourier analysis ; Harmonic analysis ; Integrals</subject><ispartof>arXiv.org, 2016-04</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cohen, M</creatorcontrib><creatorcontrib>Westreich, S</creatorcontrib><title>Solvability for semisimple Hopf algebras via integrals</title><title>arXiv.org</title><description>We use integrals of left coideal subalgebras to develop Harmonic analysis for semisimple Hopf algebras. We show how \(N^*,\) the space of functional on \(N,\) is embedded in \(H^*.\) We define a bilinear form on \(N^*\) and show that irreducible \(N\)-characters are orthogonal with respect to that form. We then give an explicit formula for induced characters of \(N\) and show how the induced characters are embedded in \(R(H).\) In the second part we give an intrinsic definition for solvable semisimple Hopf algebras via left coideal subalgebras and their integrals. We show how this definition generalizes solvability for finite groups. In particular, commutative and nilpotent Hopf algebras are solvable. We finally prove an analogue of Burnside theorem: A semisimple quasitriangular Hopf algebras of dimension \(p^aq^b\) is solvable.</description><subject>Algebra</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhfktXZ6j8F53mfBNJtOtfVPo3-ehH9DpObzvjmUgZVlcLwAHlhONQgioFVSVzFj99G7VvXU2fbjxkRNOluwUHPLWB8O1G7CPmvhqNbdzwiFqRye2NxuY_zyy8-P-urVFiP69IKVu9Euct9SBUKosoVGN_O_6Av26Nb0</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Cohen, M</creator><creator>Westreich, S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160426</creationdate><title>Solvability for semisimple Hopf algebras via integrals</title><author>Cohen, M ; Westreich, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20771129793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohen, M</creatorcontrib><creatorcontrib>Westreich, S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, M</au><au>Westreich, S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Solvability for semisimple Hopf algebras via integrals</atitle><jtitle>arXiv.org</jtitle><date>2016-04-26</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We use integrals of left coideal subalgebras to develop Harmonic analysis for semisimple Hopf algebras. We show how \(N^*,\) the space of functional on \(N,\) is embedded in \(H^*.\) We define a bilinear form on \(N^*\) and show that irreducible \(N\)-characters are orthogonal with respect to that form. We then give an explicit formula for induced characters of \(N\) and show how the induced characters are embedded in \(R(H).\) In the second part we give an intrinsic definition for solvable semisimple Hopf algebras via left coideal subalgebras and their integrals. We show how this definition generalizes solvability for finite groups. In particular, commutative and nilpotent Hopf algebras are solvable. We finally prove an analogue of Burnside theorem: A semisimple quasitriangular Hopf algebras of dimension \(p^aq^b\) is solvable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2077112979
source Free E- Journals
subjects Algebra
Fourier analysis
Harmonic analysis
Integrals
title Solvability for semisimple Hopf algebras via integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Solvability%20for%20semisimple%20Hopf%20algebras%20via%20integrals&rft.jtitle=arXiv.org&rft.au=Cohen,%20M&rft.date=2016-04-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077112979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077112979&rft_id=info:pmid/&rfr_iscdi=true