Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing

Toroidal 3-orbifolds \((S^1)^6/G\), for \(G\) a finite group, were some of the earliest examples of Calabi-Yau 3-orbifolds to be studied in string theory. While much mathematical progress towards the predictions of string theory has been made in the meantime, most of it has dealt with hypersurfaces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-03
1. Verfasser: Silversmith, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Silversmith, Robert
description Toroidal 3-orbifolds \((S^1)^6/G\), for \(G\) a finite group, were some of the earliest examples of Calabi-Yau 3-orbifolds to be studied in string theory. While much mathematical progress towards the predictions of string theory has been made in the meantime, most of it has dealt with hypersurfaces in toric varieties. As a result, very little is known about curve-counting theories on toroidal orbifolds. In this paper, we initiate a program to study mirror symmetry and the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence for toroidal orbifolds. We focus on the simplest example \([E^3/\mu_3],\) where \(E\subseteq\mathbb{P}^2\) is the elliptic curve \(\mathbb{V}(x_0^3+x_1^3+x_2^3).\) We study this orbifold from the point of GIT wall-crossing using the gauged linear sigma model, a collection of moduli spaces generalizing spaces of stable maps. Our main result is a mirror symmetry theorem that applies simultaneously to the different GIT chambers. Using this, we analyze wall-crossing behavior to obtain an LG/CY correspondence relating the genus-zero Gromov-Witten invariants of \([E^3/\mu_3]\) to generalized Fan-Jarvis-Ruan-Witten invariants.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077057754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077057754</sourcerecordid><originalsourceid>FETCH-proquest_journals_20770577543</originalsourceid><addsrcrecordid>eNqNykELwiAYgGEJgkbtPwidBdOZHYOo1X3QcVi6cphffbqif1-HfkCn9_C8I1IIKRdsVQkxIWVKPedcLLVQShZkXSPc4MmOPmcXab46wDeFjmZA8NYECnjyHQSbqImW1oeGvkwI7IyQko-XGRl3JiRX_jol89222ezZHeExuJTbHgaMX2oF15orrVUl_7s-PcU5DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077057754</pqid></control><display><type>article</type><title>Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing</title><source>Free E- Journals</source><creator>Silversmith, Robert</creator><creatorcontrib>Silversmith, Robert</creatorcontrib><description>Toroidal 3-orbifolds \((S^1)^6/G\), for \(G\) a finite group, were some of the earliest examples of Calabi-Yau 3-orbifolds to be studied in string theory. While much mathematical progress towards the predictions of string theory has been made in the meantime, most of it has dealt with hypersurfaces in toric varieties. As a result, very little is known about curve-counting theories on toroidal orbifolds. In this paper, we initiate a program to study mirror symmetry and the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence for toroidal orbifolds. We focus on the simplest example \([E^3/\mu_3],\) where \(E\subseteq\mathbb{P}^2\) is the elliptic curve \(\mathbb{V}(x_0^3+x_1^3+x_2^3).\) We study this orbifold from the point of GIT wall-crossing using the gauged linear sigma model, a collection of moduli spaces generalizing spaces of stable maps. Our main result is a mirror symmetry theorem that applies simultaneously to the different GIT chambers. Using this, we analyze wall-crossing behavior to obtain an LG/CY correspondence relating the genus-zero Gromov-Witten invariants of \([E^3/\mu_3]\) to generalized Fan-Jarvis-Ruan-Witten invariants.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves ; Geometry ; Hyperspaces ; Invariants ; String theory ; Symmetry</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Silversmith, Robert</creatorcontrib><title>Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing</title><title>arXiv.org</title><description>Toroidal 3-orbifolds \((S^1)^6/G\), for \(G\) a finite group, were some of the earliest examples of Calabi-Yau 3-orbifolds to be studied in string theory. While much mathematical progress towards the predictions of string theory has been made in the meantime, most of it has dealt with hypersurfaces in toric varieties. As a result, very little is known about curve-counting theories on toroidal orbifolds. In this paper, we initiate a program to study mirror symmetry and the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence for toroidal orbifolds. We focus on the simplest example \([E^3/\mu_3],\) where \(E\subseteq\mathbb{P}^2\) is the elliptic curve \(\mathbb{V}(x_0^3+x_1^3+x_2^3).\) We study this orbifold from the point of GIT wall-crossing using the gauged linear sigma model, a collection of moduli spaces generalizing spaces of stable maps. Our main result is a mirror symmetry theorem that applies simultaneously to the different GIT chambers. Using this, we analyze wall-crossing behavior to obtain an LG/CY correspondence relating the genus-zero Gromov-Witten invariants of \([E^3/\mu_3]\) to generalized Fan-Jarvis-Ruan-Witten invariants.</description><subject>Curves</subject><subject>Geometry</subject><subject>Hyperspaces</subject><subject>Invariants</subject><subject>String theory</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELwiAYgGEJgkbtPwidBdOZHYOo1X3QcVi6cphffbqif1-HfkCn9_C8I1IIKRdsVQkxIWVKPedcLLVQShZkXSPc4MmOPmcXab46wDeFjmZA8NYECnjyHQSbqImW1oeGvkwI7IyQko-XGRl3JiRX_jol89222ezZHeExuJTbHgaMX2oF15orrVUl_7s-PcU5DQ</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Silversmith, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160330</creationdate><title>Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing</title><author>Silversmith, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20770577543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Curves</topic><topic>Geometry</topic><topic>Hyperspaces</topic><topic>Invariants</topic><topic>String theory</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Silversmith, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silversmith, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing</atitle><jtitle>arXiv.org</jtitle><date>2016-03-30</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Toroidal 3-orbifolds \((S^1)^6/G\), for \(G\) a finite group, were some of the earliest examples of Calabi-Yau 3-orbifolds to be studied in string theory. While much mathematical progress towards the predictions of string theory has been made in the meantime, most of it has dealt with hypersurfaces in toric varieties. As a result, very little is known about curve-counting theories on toroidal orbifolds. In this paper, we initiate a program to study mirror symmetry and the Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence for toroidal orbifolds. We focus on the simplest example \([E^3/\mu_3],\) where \(E\subseteq\mathbb{P}^2\) is the elliptic curve \(\mathbb{V}(x_0^3+x_1^3+x_2^3).\) We study this orbifold from the point of GIT wall-crossing using the gauged linear sigma model, a collection of moduli spaces generalizing spaces of stable maps. Our main result is a mirror symmetry theorem that applies simultaneously to the different GIT chambers. Using this, we analyze wall-crossing behavior to obtain an LG/CY correspondence relating the genus-zero Gromov-Witten invariants of \([E^3/\mu_3]\) to generalized Fan-Jarvis-Ruan-Witten invariants.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2077057754
source Free E- Journals
subjects Curves
Geometry
Hyperspaces
Invariants
String theory
Symmetry
title Gromov-Witten theory of toroidal orbifolds and GIT wall-crossing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gromov-Witten%20theory%20of%20toroidal%20orbifolds%20and%20GIT%20wall-crossing&rft.jtitle=arXiv.org&rft.au=Silversmith,%20Robert&rft.date=2016-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077057754%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077057754&rft_id=info:pmid/&rfr_iscdi=true