Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics

We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Carrillo, J A, Hittmeir, S, Volzone, B, Yao, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carrillo, J A
Hittmeir, S
Volzone, B
Yao, Y
description We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as \(t\to\infty\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077054176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077054176</sourcerecordid><originalsourceid>FETCH-proquest_journals_20770541763</originalsourceid><addsrcrecordid>eNqNikELgjAYhkcQJOV_GHQW1qYuukkZHaJDeZeRc0zcpvvmwX-fRD-g0_vwPO8KRZSxQ3JMKd2gGKAjhNCc0yxjEaoezvbaSuFxoZSXSgTtbHLRbTvBQrgcp6-CE36KRosev2ZjZPAzFrbBd2cVrrSRuIDZDMEF_YYdWreiBxn_dov217I635LBu3GSEOrOTd4uqaaEc5KlB56z_14fnONApQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077054176</pqid></control><display><type>article</type><title>Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics</title><source>Free E- Journals</source><creator>Carrillo, J A ; Hittmeir, S ; Volzone, B ; Yao, Y</creator><creatorcontrib>Carrillo, J A ; Hittmeir, S ; Volzone, B ; Yao, Y</creatorcontrib><description>We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as \(t\to\infty\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agglomeration ; Calculus of variations ; Diffusion ; Mathematical models ; Nonlinear equations ; Symmetry ; Translations</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Carrillo, J A</creatorcontrib><creatorcontrib>Hittmeir, S</creatorcontrib><creatorcontrib>Volzone, B</creatorcontrib><creatorcontrib>Yao, Y</creatorcontrib><title>Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics</title><title>arXiv.org</title><description>We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as \(t\to\infty\).</description><subject>Agglomeration</subject><subject>Calculus of variations</subject><subject>Diffusion</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Symmetry</subject><subject>Translations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYhkcQJOV_GHQW1qYuukkZHaJDeZeRc0zcpvvmwX-fRD-g0_vwPO8KRZSxQ3JMKd2gGKAjhNCc0yxjEaoezvbaSuFxoZSXSgTtbHLRbTvBQrgcp6-CE36KRosev2ZjZPAzFrbBd2cVrrSRuIDZDMEF_YYdWreiBxn_dov217I635LBu3GSEOrOTd4uqaaEc5KlB56z_14fnONApQ</recordid><startdate>20220717</startdate><enddate>20220717</enddate><creator>Carrillo, J A</creator><creator>Hittmeir, S</creator><creator>Volzone, B</creator><creator>Yao, Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220717</creationdate><title>Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics</title><author>Carrillo, J A ; Hittmeir, S ; Volzone, B ; Yao, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20770541763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Calculus of variations</topic><topic>Diffusion</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Symmetry</topic><topic>Translations</topic><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, J A</creatorcontrib><creatorcontrib>Hittmeir, S</creatorcontrib><creatorcontrib>Volzone, B</creatorcontrib><creatorcontrib>Yao, Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, J A</au><au>Hittmeir, S</au><au>Volzone, B</au><au>Yao, Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics</atitle><jtitle>arXiv.org</jtitle><date>2022-07-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as \(t\to\infty\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2077054176
source Free E- Journals
subjects Agglomeration
Calculus of variations
Diffusion
Mathematical models
Nonlinear equations
Symmetry
Translations
title Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonlinear%20Aggregation-Diffusion%20Equations:%20Radial%20Symmetry%20and%20Long%20Time%20Asymptotics&rft.jtitle=arXiv.org&rft.au=Carrillo,%20J%20A&rft.date=2022-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077054176%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2077054176&rft_id=info:pmid/&rfr_iscdi=true