Lee monoid L 4 1 is non-finitely based

We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2018-01, Vol.79 (3), p.1-14
Hauptverfasser: Mikhailova, Inna A, Sapir, Olga B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 3
container_start_page 1
container_title Algebra universalis
container_volume 79
creator Mikhailova, Inna A
Sapir, Olga B
description We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.
doi_str_mv 10.1007/s00012-018-0541-9
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076983843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076983843</sourcerecordid><originalsourceid>FETCH-proquest_journals_20769838433</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOGLKFh_HsAtILhF700Tm8yiOHR0L5WmkFITbdrBt7eCD-B0hu8AbAj3hJgdIiKS4Eiao5LEzQQSkgK5NkRTSEYWXAmJc1jE2HznzKgEdrm17BF8cBXLmWTEXGQ-eF4773rbvtm9jLZawawu22jXvy5heznfTlf-7MJrsLEvmjB0fqRCYHY0OtUyTf-7PgHiNEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076983843</pqid></control><display><type>article</type><title>Lee monoid L 4 1 is non-finitely based</title><source>Springer Nature - Complete Springer Journals</source><creator>Mikhailova, Inna A ; Sapir, Olga B</creator><creatorcontrib>Mikhailova, Inna A ; Sapir, Olga B</creatorcontrib><description>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-018-0541-9</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Monoids</subject><ispartof>Algebra universalis, 2018-01, Vol.79 (3), p.1-14</ispartof><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mikhailova, Inna A</creatorcontrib><creatorcontrib>Sapir, Olga B</creatorcontrib><title>Lee monoid L 4 1 is non-finitely based</title><title>Algebra universalis</title><description>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</description><subject>Monoids</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNyr0KwjAUQOGLKFh_HsAtILhF700Tm8yiOHR0L5WmkFITbdrBt7eCD-B0hu8AbAj3hJgdIiKS4Eiao5LEzQQSkgK5NkRTSEYWXAmJc1jE2HznzKgEdrm17BF8cBXLmWTEXGQ-eF4773rbvtm9jLZawawu22jXvy5heznfTlf-7MJrsLEvmjB0fqRCYHY0OtUyTf-7PgHiNEo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mikhailova, Inna A</creator><creator>Sapir, Olga B</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180101</creationdate><title>Lee monoid L 4 1 is non-finitely based</title><author>Mikhailova, Inna A ; Sapir, Olga B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20769838433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Monoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, Inna A</creatorcontrib><creatorcontrib>Sapir, Olga B</creatorcontrib><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, Inna A</au><au>Sapir, Olga B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lee monoid L 4 1 is non-finitely based</atitle><jtitle>Algebra universalis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>79</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00012-018-0541-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-5240
ispartof Algebra universalis, 2018-01, Vol.79 (3), p.1-14
issn 0002-5240
1420-8911
language eng
recordid cdi_proquest_journals_2076983843
source Springer Nature - Complete Springer Journals
subjects Monoids
title Lee monoid L 4 1 is non-finitely based
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lee%20monoid%20L%204%201%20is%20non-finitely%20based&rft.jtitle=Algebra%20universalis&rft.au=Mikhailova,%20Inna%20A&rft.date=2018-01-01&rft.volume=79&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-018-0541-9&rft_dat=%3Cproquest%3E2076983843%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076983843&rft_id=info:pmid/&rfr_iscdi=true