Lee monoid L 4 1 is non-finitely based
We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity elemen...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2018-01, Vol.79 (3), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Algebra universalis |
container_volume | 79 |
creator | Mikhailova, Inna A Sapir, Olga B |
description | We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3. |
doi_str_mv | 10.1007/s00012-018-0541-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076983843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076983843</sourcerecordid><originalsourceid>FETCH-proquest_journals_20769838433</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOGLKFh_HsAtILhF700Tm8yiOHR0L5WmkFITbdrBt7eCD-B0hu8AbAj3hJgdIiKS4Eiao5LEzQQSkgK5NkRTSEYWXAmJc1jE2HznzKgEdrm17BF8cBXLmWTEXGQ-eF4773rbvtm9jLZawawu22jXvy5heznfTlf-7MJrsLEvmjB0fqRCYHY0OtUyTf-7PgHiNEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076983843</pqid></control><display><type>article</type><title>Lee monoid L 4 1 is non-finitely based</title><source>Springer Nature - Complete Springer Journals</source><creator>Mikhailova, Inna A ; Sapir, Olga B</creator><creatorcontrib>Mikhailova, Inna A ; Sapir, Olga B</creatorcontrib><description>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-018-0541-9</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Monoids</subject><ispartof>Algebra universalis, 2018-01, Vol.79 (3), p.1-14</ispartof><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mikhailova, Inna A</creatorcontrib><creatorcontrib>Sapir, Olga B</creatorcontrib><title>Lee monoid L 4 1 is non-finitely based</title><title>Algebra universalis</title><description>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</description><subject>Monoids</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNyr0KwjAUQOGLKFh_HsAtILhF700Tm8yiOHR0L5WmkFITbdrBt7eCD-B0hu8AbAj3hJgdIiKS4Eiao5LEzQQSkgK5NkRTSEYWXAmJc1jE2HznzKgEdrm17BF8cBXLmWTEXGQ-eF4773rbvtm9jLZawawu22jXvy5heznfTlf-7MJrsLEvmjB0fqRCYHY0OtUyTf-7PgHiNEo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mikhailova, Inna A</creator><creator>Sapir, Olga B</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180101</creationdate><title>Lee monoid L 4 1 is non-finitely based</title><author>Mikhailova, Inna A ; Sapir, Olga B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20769838433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Monoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, Inna A</creatorcontrib><creatorcontrib>Sapir, Olga B</creatorcontrib><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, Inna A</au><au>Sapir, Olga B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lee monoid L 4 1 is non-finitely based</atitle><jtitle>Algebra universalis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>79</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>We establish a new sufficient condition under which a monoid is non-finitely based and apply this condition to show that the 9-element monoid L41 is non-finitely based. The monoid L41 was the only unsolved case in the finite basis problem for Lee monoids Lℓ1, obtained by adjoining an identity element to the semigroup Lℓ generated by two idempotents a and b subjected to the relation 0=abab⋯ (length ℓ). We also prove a syntactic sufficient condition which is equivalent to the sufficient condition of Lee under which a semigroup is non-finitely based. This gives a new proof to the results of Zhang–Luo and Lee that the semigroup Lℓ is non-finitely based for each ℓ≥3.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00012-018-0541-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5240 |
ispartof | Algebra universalis, 2018-01, Vol.79 (3), p.1-14 |
issn | 0002-5240 1420-8911 |
language | eng |
recordid | cdi_proquest_journals_2076983843 |
source | Springer Nature - Complete Springer Journals |
subjects | Monoids |
title | Lee monoid L 4 1 is non-finitely based |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lee%20monoid%20L%204%201%20is%20non-finitely%20based&rft.jtitle=Algebra%20universalis&rft.au=Mikhailova,%20Inna%20A&rft.date=2018-01-01&rft.volume=79&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-018-0541-9&rft_dat=%3Cproquest%3E2076983843%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076983843&rft_id=info:pmid/&rfr_iscdi=true |