Mean Waiting Time Approximations in the G/G/1 Queue
It is known that correlations in an arrival stream offered to a single-server queue profoundly affect mean waiting times as compared to a corresponding renewal stream offered to the same server. Nonetheless, this paper uses appropriately constructed GI/G/1 models to create viable approximations for...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2004-03, Vol.46 (3/4), p.481-506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 3/4 |
container_start_page | 481 |
container_title | Queueing systems |
container_volume | 46 |
creator | Jagerman, David L. Balcıoglu, Barış Altıok, Tayfur Melamed, Benjamin |
description | It is known that correlations in an arrival stream offered to a single-server queue profoundly affect mean waiting times as compared to a corresponding renewal stream offered to the same server. Nonetheless, this paper uses appropriately constructed GI/G/1 models to create viable approximations for queues with correlated arrivals. The constructed renewal arrival process, called PMRS (Peakedness Matched Renewal Stream), preserves the peakedness of the original stream and its arrival rate; furthermore, the squared coefficient of variation of the constructed PMRS equals the index of dispersion of the original stream. Accordingly, the GI/G/1 approximation is termed PMRQ (Peakedness Matched Renewal Queue). To test the efficacy of the PMRQ approximation, we employed a simple variant of the TES+ process as the autocorrelated arrival stream, and simulated the corresponding TES+/G/1 queue for several service distributions and traffic intensities. Extensive experimentation showed that the proposed PMRQ approximations produced mean waiting times that compared favorably with simulation results of the original systems. Markov-modulated Poisson process (MMPP) is also discussed as a special case.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/B:QUES.0000027996.28824.89 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207690691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>638879631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5f921d92c315703d827a17a8fdef1aa23c41ebcde549549e9eb43727e5053b13</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoWKfvEHbfLjlpmmZ325hVmMhw4mXI2lPtcG1tWnBvb-oEDwfOzc9_Pj5CppxFnIGYLefb1_VLxMYBpXUSQZpCHKX6ggRcKgh1HItLEjCQKmRcsGty49zBxxOQOiDiCW1N32zVV_U73VVHpIu27Zrv6mj7qqkdrWrafyDNZtmM0-2AA96Sq9J-Orz7uxOyu1_vVg_h5jl7XC02Ye4h-lCWGnihIRcehIkiBWW5smlZYMmtBZHHHPd5gTLWflHjPhYKFEomxZ6LCZmeaz3O14CuN4dm6Gr_0QBTiWaJHkPzcyjvGuc6LE3befTuZDgzoyKzNKMi86_I_CoyqRY_qIZYTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207690691</pqid></control><display><type>article</type><title>Mean Waiting Time Approximations in the G/G/1 Queue</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jagerman, David L. ; Balcıoglu, Barış ; Altıok, Tayfur ; Melamed, Benjamin</creator><creatorcontrib>Jagerman, David L. ; Balcıoglu, Barış ; Altıok, Tayfur ; Melamed, Benjamin</creatorcontrib><description>It is known that correlations in an arrival stream offered to a single-server queue profoundly affect mean waiting times as compared to a corresponding renewal stream offered to the same server. Nonetheless, this paper uses appropriately constructed GI/G/1 models to create viable approximations for queues with correlated arrivals. The constructed renewal arrival process, called PMRS (Peakedness Matched Renewal Stream), preserves the peakedness of the original stream and its arrival rate; furthermore, the squared coefficient of variation of the constructed PMRS equals the index of dispersion of the original stream. Accordingly, the GI/G/1 approximation is termed PMRQ (Peakedness Matched Renewal Queue). To test the efficacy of the PMRQ approximation, we employed a simple variant of the TES+ process as the autocorrelated arrival stream, and simulated the corresponding TES+/G/1 queue for several service distributions and traffic intensities. Extensive experimentation showed that the proposed PMRQ approximations produced mean waiting times that compared favorably with simulation results of the original systems. Markov-modulated Poisson process (MMPP) is also discussed as a special case.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1023/B:QUES.0000027996.28824.89</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Approximation ; Monte Carlo simulation ; Queuing theory ; Random variables ; Studies ; Waiting period</subject><ispartof>Queueing systems, 2004-03, Vol.46 (3/4), p.481-506</ispartof><rights>Copyright (c) 2004 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-5f921d92c315703d827a17a8fdef1aa23c41ebcde549549e9eb43727e5053b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jagerman, David L.</creatorcontrib><creatorcontrib>Balcıoglu, Barış</creatorcontrib><creatorcontrib>Altıok, Tayfur</creatorcontrib><creatorcontrib>Melamed, Benjamin</creatorcontrib><title>Mean Waiting Time Approximations in the G/G/1 Queue</title><title>Queueing systems</title><description>It is known that correlations in an arrival stream offered to a single-server queue profoundly affect mean waiting times as compared to a corresponding renewal stream offered to the same server. Nonetheless, this paper uses appropriately constructed GI/G/1 models to create viable approximations for queues with correlated arrivals. The constructed renewal arrival process, called PMRS (Peakedness Matched Renewal Stream), preserves the peakedness of the original stream and its arrival rate; furthermore, the squared coefficient of variation of the constructed PMRS equals the index of dispersion of the original stream. Accordingly, the GI/G/1 approximation is termed PMRQ (Peakedness Matched Renewal Queue). To test the efficacy of the PMRQ approximation, we employed a simple variant of the TES+ process as the autocorrelated arrival stream, and simulated the corresponding TES+/G/1 queue for several service distributions and traffic intensities. Extensive experimentation showed that the proposed PMRQ approximations produced mean waiting times that compared favorably with simulation results of the original systems. Markov-modulated Poisson process (MMPP) is also discussed as a special case.[PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Monte Carlo simulation</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Studies</subject><subject>Waiting period</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkNFKwzAUhoMoWKfvEHbfLjlpmmZ325hVmMhw4mXI2lPtcG1tWnBvb-oEDwfOzc9_Pj5CppxFnIGYLefb1_VLxMYBpXUSQZpCHKX6ggRcKgh1HItLEjCQKmRcsGty49zBxxOQOiDiCW1N32zVV_U73VVHpIu27Zrv6mj7qqkdrWrafyDNZtmM0-2AA96Sq9J-Orz7uxOyu1_vVg_h5jl7XC02Ye4h-lCWGnihIRcehIkiBWW5smlZYMmtBZHHHPd5gTLWflHjPhYKFEomxZ6LCZmeaz3O14CuN4dm6Gr_0QBTiWaJHkPzcyjvGuc6LE3befTuZDgzoyKzNKMi86_I_CoyqRY_qIZYTA</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Jagerman, David L.</creator><creator>Balcıoglu, Barış</creator><creator>Altıok, Tayfur</creator><creator>Melamed, Benjamin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20040301</creationdate><title>Mean Waiting Time Approximations in the G/G/1 Queue</title><author>Jagerman, David L. ; Balcıoglu, Barış ; Altıok, Tayfur ; Melamed, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5f921d92c315703d827a17a8fdef1aa23c41ebcde549549e9eb43727e5053b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Monte Carlo simulation</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Studies</topic><topic>Waiting period</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagerman, David L.</creatorcontrib><creatorcontrib>Balcıoglu, Barış</creatorcontrib><creatorcontrib>Altıok, Tayfur</creatorcontrib><creatorcontrib>Melamed, Benjamin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagerman, David L.</au><au>Balcıoglu, Barış</au><au>Altıok, Tayfur</au><au>Melamed, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean Waiting Time Approximations in the G/G/1 Queue</atitle><jtitle>Queueing systems</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>46</volume><issue>3/4</issue><spage>481</spage><epage>506</epage><pages>481-506</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>It is known that correlations in an arrival stream offered to a single-server queue profoundly affect mean waiting times as compared to a corresponding renewal stream offered to the same server. Nonetheless, this paper uses appropriately constructed GI/G/1 models to create viable approximations for queues with correlated arrivals. The constructed renewal arrival process, called PMRS (Peakedness Matched Renewal Stream), preserves the peakedness of the original stream and its arrival rate; furthermore, the squared coefficient of variation of the constructed PMRS equals the index of dispersion of the original stream. Accordingly, the GI/G/1 approximation is termed PMRQ (Peakedness Matched Renewal Queue). To test the efficacy of the PMRQ approximation, we employed a simple variant of the TES+ process as the autocorrelated arrival stream, and simulated the corresponding TES+/G/1 queue for several service distributions and traffic intensities. Extensive experimentation showed that the proposed PMRQ approximations produced mean waiting times that compared favorably with simulation results of the original systems. Markov-modulated Poisson process (MMPP) is also discussed as a special case.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/B:QUES.0000027996.28824.89</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-0130 |
ispartof | Queueing systems, 2004-03, Vol.46 (3/4), p.481-506 |
issn | 0257-0130 1572-9443 |
language | eng |
recordid | cdi_proquest_journals_207690691 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Monte Carlo simulation Queuing theory Random variables Studies Waiting period |
title | Mean Waiting Time Approximations in the G/G/1 Queue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20Waiting%20Time%20Approximations%20in%20the%20G/G/1%20Queue&rft.jtitle=Queueing%20systems&rft.au=Jagerman,%20David%20L.&rft.date=2004-03-01&rft.volume=46&rft.issue=3/4&rft.spage=481&rft.epage=506&rft.pages=481-506&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1023/B:QUES.0000027996.28824.89&rft_dat=%3Cproquest_cross%3E638879631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207690691&rft_id=info:pmid/&rfr_iscdi=true |