The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria

Consider a network where two routes are available for users wishing to travel from a source to a destination. On one route (which could be viewed as private transport) service slows as traffic increases. On the other (which could be viewed as public transport) the service frequency increases with de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Queueing systems 2005-04, Vol.49 (3-4), p.321-334
Hauptverfasser: Afimeimounga, Heti, Solomon, Wiremu, Ziedins, Ilze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3-4
container_start_page 321
container_title Queueing systems
container_volume 49
creator Afimeimounga, Heti
Solomon, Wiremu
Ziedins, Ilze
description Consider a network where two routes are available for users wishing to travel from a source to a destination. On one route (which could be viewed as private transport) service slows as traffic increases. On the other (which could be viewed as public transport) the service frequency increases with demand. The Downs-Thomson paradox occurs when improvements in service produce an overall decline in performance as user equilibria adjust. Using the model proposed by Calvert, with a .|M|1 queue corresponding to the private transport route, and a bulk-service infinite server queue modelling the public transport route, we give a complete analysis of this system in the setting of probabilistic routing. We obtain the user equilibria (which are not always unique), and determine their stability.
doi_str_mv 10.1007/s11134-005-6970-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207689384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>841206601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-e0d28a44d9dfa79aa25ad4e6a8d98dead766e6759fb5e64930b923a0fc444b553</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKs_wFvwbPTN98ab1PUDCiq255DdZOmWdtMmW2z_vVvqaWAYZoYHoVsKDxRAP2ZKKRcEQBJlNBA4QyMqNSNGCH6ORsCkJkA5XKKrnJcAoJg0I_Q9WwT8En-7TGaLuM6xw18uOR_3T7jct7kPXR3u8bxrt7vQhZyx6zz-6V3Vrtr-gGOD5zkkXG53g1Gl1l2ji8atcrj51zGav5azyTuZfr59TJ6npGaa9SSAZ4UTwhvfOG2cY9J5EZQrvCl8cF4rFZSWpqlkUMJwqAzjDppaCFFJycfo7tS7SXH4lnu7jLvUDZOWgVaF4YUYQvQUqlPMOYXGblK7dulgKdgjOHsCZwdw9gjOAv8DB_tg3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207689384</pqid></control><display><type>article</type><title>The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria</title><source>SpringerLink Journals</source><creator>Afimeimounga, Heti ; Solomon, Wiremu ; Ziedins, Ilze</creator><creatorcontrib>Afimeimounga, Heti ; Solomon, Wiremu ; Ziedins, Ilze</creatorcontrib><description>Consider a network where two routes are available for users wishing to travel from a source to a destination. On one route (which could be viewed as private transport) service slows as traffic increases. On the other (which could be viewed as public transport) the service frequency increases with demand. The Downs-Thomson paradox occurs when improvements in service produce an overall decline in performance as user equilibria adjust. Using the model proposed by Calvert, with a .|M|1 queue corresponding to the private transport route, and a bulk-service infinite server queue modelling the public transport route, we give a complete analysis of this system in the setting of probabilistic routing. We obtain the user equilibria (which are not always unique), and determine their stability.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-005-6970-0</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Equilibrium ; Market equilibrium ; Mathematical analysis ; Public transportation ; Quality of service ; Queuing theory ; Studies ; Traffic assignment ; Traffic congestion ; Transportation planning</subject><ispartof>Queueing systems, 2005-04, Vol.49 (3-4), p.321-334</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-e0d28a44d9dfa79aa25ad4e6a8d98dead766e6759fb5e64930b923a0fc444b553</citedby><cites>FETCH-LOGICAL-c272t-e0d28a44d9dfa79aa25ad4e6a8d98dead766e6759fb5e64930b923a0fc444b553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Afimeimounga, Heti</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><creatorcontrib>Ziedins, Ilze</creatorcontrib><title>The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria</title><title>Queueing systems</title><description>Consider a network where two routes are available for users wishing to travel from a source to a destination. On one route (which could be viewed as private transport) service slows as traffic increases. On the other (which could be viewed as public transport) the service frequency increases with demand. The Downs-Thomson paradox occurs when improvements in service produce an overall decline in performance as user equilibria adjust. Using the model proposed by Calvert, with a .|M|1 queue corresponding to the private transport route, and a bulk-service infinite server queue modelling the public transport route, we give a complete analysis of this system in the setting of probabilistic routing. We obtain the user equilibria (which are not always unique), and determine their stability.</description><subject>Equilibrium</subject><subject>Market equilibrium</subject><subject>Mathematical analysis</subject><subject>Public transportation</subject><subject>Quality of service</subject><subject>Queuing theory</subject><subject>Studies</subject><subject>Traffic assignment</subject><subject>Traffic congestion</subject><subject>Transportation planning</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEYhIMoWKs_wFvwbPTN98ab1PUDCiq255DdZOmWdtMmW2z_vVvqaWAYZoYHoVsKDxRAP2ZKKRcEQBJlNBA4QyMqNSNGCH6ORsCkJkA5XKKrnJcAoJg0I_Q9WwT8En-7TGaLuM6xw18uOR_3T7jct7kPXR3u8bxrt7vQhZyx6zz-6V3Vrtr-gGOD5zkkXG53g1Gl1l2ji8atcrj51zGav5azyTuZfr59TJ6npGaa9SSAZ4UTwhvfOG2cY9J5EZQrvCl8cF4rFZSWpqlkUMJwqAzjDppaCFFJycfo7tS7SXH4lnu7jLvUDZOWgVaF4YUYQvQUqlPMOYXGblK7dulgKdgjOHsCZwdw9gjOAv8DB_tg3Q</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Afimeimounga, Heti</creator><creator>Solomon, Wiremu</creator><creator>Ziedins, Ilze</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria</title><author>Afimeimounga, Heti ; Solomon, Wiremu ; Ziedins, Ilze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-e0d28a44d9dfa79aa25ad4e6a8d98dead766e6759fb5e64930b923a0fc444b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Equilibrium</topic><topic>Market equilibrium</topic><topic>Mathematical analysis</topic><topic>Public transportation</topic><topic>Quality of service</topic><topic>Queuing theory</topic><topic>Studies</topic><topic>Traffic assignment</topic><topic>Traffic congestion</topic><topic>Transportation planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afimeimounga, Heti</creatorcontrib><creatorcontrib>Solomon, Wiremu</creatorcontrib><creatorcontrib>Ziedins, Ilze</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afimeimounga, Heti</au><au>Solomon, Wiremu</au><au>Ziedins, Ilze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria</atitle><jtitle>Queueing systems</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>49</volume><issue>3-4</issue><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>Consider a network where two routes are available for users wishing to travel from a source to a destination. On one route (which could be viewed as private transport) service slows as traffic increases. On the other (which could be viewed as public transport) the service frequency increases with demand. The Downs-Thomson paradox occurs when improvements in service produce an overall decline in performance as user equilibria adjust. Using the model proposed by Calvert, with a .|M|1 queue corresponding to the private transport route, and a bulk-service infinite server queue modelling the public transport route, we give a complete analysis of this system in the setting of probabilistic routing. We obtain the user equilibria (which are not always unique), and determine their stability.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11134-005-6970-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-0130
ispartof Queueing systems, 2005-04, Vol.49 (3-4), p.321-334
issn 0257-0130
1572-9443
language eng
recordid cdi_proquest_journals_207689384
source SpringerLink Journals
subjects Equilibrium
Market equilibrium
Mathematical analysis
Public transportation
Quality of service
Queuing theory
Studies
Traffic assignment
Traffic congestion
Transportation planning
title The Downs-Thomson Paradox: Existence, Uniqueness and Stability of User Equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Downs-Thomson%20Paradox:%20Existence,%20Uniqueness%20and%20Stability%20of%20User%20Equilibria&rft.jtitle=Queueing%20systems&rft.au=Afimeimounga,%20Heti&rft.date=2005-04-01&rft.volume=49&rft.issue=3-4&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-005-6970-0&rft_dat=%3Cproquest_cross%3E841206601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207689384&rft_id=info:pmid/&rfr_iscdi=true