New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment

The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m\(^{2}\) underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m\(^{2}\) as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-12
Hauptverfasser: Zhang, Y, Q -B Gou, Cai, H, T -L Chen, Luobu, Danzeng, C -F Feng, Y -L Feng, Z -Y Feng, Gao, Q, X -J Gao, Y -Q Guo, Y -Y Guo, Y -Y Hou, H -B Hu, Jin, C, H -J Li, Liu, C, M -Y Liu, X -L Qian, Tian, Z, Wang, Z, Xue, L, X -Y Zhang, Xi-Ying, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Y
Q -B Gou
Cai, H
T -L Chen
Luobu, Danzeng
C -F Feng
Y -L Feng
Z -Y Feng
Gao, Q
X -J Gao
Y -Q Guo
Y -Y Guo
Y -Y Hou
H -B Hu
Jin, C
H -J Li
Liu, C
M -Y Liu
X -L Qian
Tian, Z
Wang, Z
Xue, L
X -Y Zhang
Xi-Ying, Zhang
description The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m\(^{2}\) underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m\(^{2}\) as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99\%, according to the full Monte Carlo (MC) simulation for \(\gamma\)-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m\(^{2}\) by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10\% (with reference to the center of the scintillator), time resolution FWHM of \(\sim\)2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.
doi_str_mv 10.48550/arxiv.1712.06661
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076893479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076893479</sourcerecordid><originalsourceid>FETCH-proquest_journals_20768934793</originalsourceid><addsrcrecordid>eNqNjLsKwkAURBdBUNQPsFuw0cK4j2QTSxFFGxtTBmSNN7qSl7vX198bwQ-wGObAHIaQIWeeHwUBm2n7Mg-Ph1x4TCnFW6QrpOTTyBeiQwbOXRljQoUiCGSXbHfwpLWtsMJ3DdSlpkST5xorS0-AkH4ha4IXoLE5AtLFPhknZ10UOpnQ1asGawoosU_amc4dDH7dI6P1Kl5ups377Q4OD9fqbstmOggWqmgu_XAu_7M-pHdCnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076893479</pqid></control><display><type>article</type><title>New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment</title><source>Free E- Journals</source><creator>Zhang, Y ; Q -B Gou ; Cai, H ; T -L Chen ; Luobu, Danzeng ; C -F Feng ; Y -L Feng ; Z -Y Feng ; Gao, Q ; X -J Gao ; Y -Q Guo ; Y -Y Guo ; Y -Y Hou ; H -B Hu ; Jin, C ; H -J Li ; Liu, C ; M -Y Liu ; X -L Qian ; Tian, Z ; Wang, Z ; Xue, L ; X -Y Zhang ; Xi-Ying, Zhang</creator><creatorcontrib>Zhang, Y ; Q -B Gou ; Cai, H ; T -L Chen ; Luobu, Danzeng ; C -F Feng ; Y -L Feng ; Z -Y Feng ; Gao, Q ; X -J Gao ; Y -Q Guo ; Y -Y Guo ; Y -Y Hou ; H -B Hu ; Jin, C ; H -J Li ; Liu, C ; M -Y Liu ; X -L Qian ; Tian, Z ; Wang, Z ; Xue, L ; X -Y Zhang ; Xi-Ying, Zhang</creatorcontrib><description>The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m\(^{2}\) underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m\(^{2}\) as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99\%, according to the full Monte Carlo (MC) simulation for \(\gamma\)-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m\(^{2}\) by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10\% (with reference to the center of the scintillator), time resolution FWHM of \(\sim\)2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.06661</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Background radiation ; Computer simulation ; Cosmic rays ; Detectors ; Ionization ; Muons ; Nonuniformity ; Scintillation counters ; Sensors ; Underground construction</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Q -B Gou</creatorcontrib><creatorcontrib>Cai, H</creatorcontrib><creatorcontrib>T -L Chen</creatorcontrib><creatorcontrib>Luobu, Danzeng</creatorcontrib><creatorcontrib>C -F Feng</creatorcontrib><creatorcontrib>Y -L Feng</creatorcontrib><creatorcontrib>Z -Y Feng</creatorcontrib><creatorcontrib>Gao, Q</creatorcontrib><creatorcontrib>X -J Gao</creatorcontrib><creatorcontrib>Y -Q Guo</creatorcontrib><creatorcontrib>Y -Y Guo</creatorcontrib><creatorcontrib>Y -Y Hou</creatorcontrib><creatorcontrib>H -B Hu</creatorcontrib><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>H -J Li</creatorcontrib><creatorcontrib>Liu, C</creatorcontrib><creatorcontrib>M -Y Liu</creatorcontrib><creatorcontrib>X -L Qian</creatorcontrib><creatorcontrib>Tian, Z</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Xue, L</creatorcontrib><creatorcontrib>X -Y Zhang</creatorcontrib><creatorcontrib>Xi-Ying, Zhang</creatorcontrib><title>New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment</title><title>arXiv.org</title><description>The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m\(^{2}\) underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m\(^{2}\) as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99\%, according to the full Monte Carlo (MC) simulation for \(\gamma\)-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m\(^{2}\) by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10\% (with reference to the center of the scintillator), time resolution FWHM of \(\sim\)2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.</description><subject>Arrays</subject><subject>Background radiation</subject><subject>Computer simulation</subject><subject>Cosmic rays</subject><subject>Detectors</subject><subject>Ionization</subject><subject>Muons</subject><subject>Nonuniformity</subject><subject>Scintillation counters</subject><subject>Sensors</subject><subject>Underground construction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLsKwkAURBdBUNQPsFuw0cK4j2QTSxFFGxtTBmSNN7qSl7vX198bwQ-wGObAHIaQIWeeHwUBm2n7Mg-Ph1x4TCnFW6QrpOTTyBeiQwbOXRljQoUiCGSXbHfwpLWtsMJ3DdSlpkST5xorS0-AkH4ha4IXoLE5AtLFPhknZ10UOpnQ1asGawoosU_amc4dDH7dI6P1Kl5ups377Q4OD9fqbstmOggWqmgu_XAu_7M-pHdCnA</recordid><startdate>20171218</startdate><enddate>20171218</enddate><creator>Zhang, Y</creator><creator>Q -B Gou</creator><creator>Cai, H</creator><creator>T -L Chen</creator><creator>Luobu, Danzeng</creator><creator>C -F Feng</creator><creator>Y -L Feng</creator><creator>Z -Y Feng</creator><creator>Gao, Q</creator><creator>X -J Gao</creator><creator>Y -Q Guo</creator><creator>Y -Y Guo</creator><creator>Y -Y Hou</creator><creator>H -B Hu</creator><creator>Jin, C</creator><creator>H -J Li</creator><creator>Liu, C</creator><creator>M -Y Liu</creator><creator>X -L Qian</creator><creator>Tian, Z</creator><creator>Wang, Z</creator><creator>Xue, L</creator><creator>X -Y Zhang</creator><creator>Xi-Ying, Zhang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171218</creationdate><title>New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment</title><author>Zhang, Y ; Q -B Gou ; Cai, H ; T -L Chen ; Luobu, Danzeng ; C -F Feng ; Y -L Feng ; Z -Y Feng ; Gao, Q ; X -J Gao ; Y -Q Guo ; Y -Y Guo ; Y -Y Hou ; H -B Hu ; Jin, C ; H -J Li ; Liu, C ; M -Y Liu ; X -L Qian ; Tian, Z ; Wang, Z ; Xue, L ; X -Y Zhang ; Xi-Ying, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20768934793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>Background radiation</topic><topic>Computer simulation</topic><topic>Cosmic rays</topic><topic>Detectors</topic><topic>Ionization</topic><topic>Muons</topic><topic>Nonuniformity</topic><topic>Scintillation counters</topic><topic>Sensors</topic><topic>Underground construction</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Q -B Gou</creatorcontrib><creatorcontrib>Cai, H</creatorcontrib><creatorcontrib>T -L Chen</creatorcontrib><creatorcontrib>Luobu, Danzeng</creatorcontrib><creatorcontrib>C -F Feng</creatorcontrib><creatorcontrib>Y -L Feng</creatorcontrib><creatorcontrib>Z -Y Feng</creatorcontrib><creatorcontrib>Gao, Q</creatorcontrib><creatorcontrib>X -J Gao</creatorcontrib><creatorcontrib>Y -Q Guo</creatorcontrib><creatorcontrib>Y -Y Guo</creatorcontrib><creatorcontrib>Y -Y Hou</creatorcontrib><creatorcontrib>H -B Hu</creatorcontrib><creatorcontrib>Jin, C</creatorcontrib><creatorcontrib>H -J Li</creatorcontrib><creatorcontrib>Liu, C</creatorcontrib><creatorcontrib>M -Y Liu</creatorcontrib><creatorcontrib>X -L Qian</creatorcontrib><creatorcontrib>Tian, Z</creatorcontrib><creatorcontrib>Wang, Z</creatorcontrib><creatorcontrib>Xue, L</creatorcontrib><creatorcontrib>X -Y Zhang</creatorcontrib><creatorcontrib>Xi-Ying, Zhang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y</au><au>Q -B Gou</au><au>Cai, H</au><au>T -L Chen</au><au>Luobu, Danzeng</au><au>C -F Feng</au><au>Y -L Feng</au><au>Z -Y Feng</au><au>Gao, Q</au><au>X -J Gao</au><au>Y -Q Guo</au><au>Y -Y Guo</au><au>Y -Y Hou</au><au>H -B Hu</au><au>Jin, C</au><au>H -J Li</au><au>Liu, C</au><au>M -Y Liu</au><au>X -L Qian</au><au>Tian, Z</au><au>Wang, Z</au><au>Xue, L</au><au>X -Y Zhang</au><au>Xi-Ying, Zhang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment</atitle><jtitle>arXiv.org</jtitle><date>2017-12-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m\(^{2}\) underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m\(^{2}\) as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99\%, according to the full Monte Carlo (MC) simulation for \(\gamma\)-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m\(^{2}\) by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10\% (with reference to the center of the scintillator), time resolution FWHM of \(\sim\)2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.06661</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076893479
source Free E- Journals
subjects Arrays
Background radiation
Computer simulation
Cosmic rays
Detectors
Ionization
Muons
Nonuniformity
Scintillation counters
Sensors
Underground construction
title New prototype scintillator detector for the Tibet AS\(\gamma\) Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=New%20prototype%20scintillator%20detector%20for%20the%20Tibet%20AS%5C(%5Cgamma%5C)%20Experiment&rft.jtitle=arXiv.org&rft.au=Zhang,%20Y&rft.date=2017-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.06661&rft_dat=%3Cproquest%3E2076893479%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076893479&rft_id=info:pmid/&rfr_iscdi=true