On cobordism of generalized (real) Bott manifolds
We show that all generalized (real) Bott manifolds which are (small covers) quasitoric manifolds over a product of simplices \(\Delta^{n_1}\times\cdots\times\Delta^{n_r}\times\Delta^{1}\) are always boundaries of some manifolds. But these manifolds with the natural \((\mathbb{Z}_2)^n\) action do not...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that all generalized (real) Bott manifolds which are (small covers) quasitoric manifolds over a product of simplices \(\Delta^{n_1}\times\cdots\times\Delta^{n_r}\times\Delta^{1}\) are always boundaries of some manifolds. But these manifolds with the natural \((\mathbb{Z}_2)^n\) action do not necessarily bound equvariantly. In addition, we can construct some examples of null-cobordant but not orientedly null-cobordant manifolds among quasitoric manifolds. |
---|---|
ISSN: | 2331-8422 |