Improved Bohr's inequality for locally univalent harmonic mappings

We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-09
Hauptverfasser: Evdoridis, Stavros, Saminathan Ponnusamy, Rasila, Antti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Evdoridis, Stavros
Saminathan Ponnusamy
Rasila, Antti
description We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076751107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076751107</sourcerecordid><originalsourceid>FETCH-proquest_journals_20767511073</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IGDUyE_tnGuKLq7l1BTm5ImaX4KfXs7-ABON9xxG5RRxkhxOVO6Q3kIA8aYVpyWJctQ_Rydt7N8Q217fwqgjJyS0Cou0FkP2rZC6wWSUbPQ0kTohR-tUS2MwjllPuGAtp3QQeY_7tHxfntdH8U6npIMsRls8mZVDcW84iUhmLP_qi_6Qjpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076751107</pqid></control><display><type>article</type><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><source>Free E- Journals</source><creator>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</creator><creatorcontrib>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</creatorcontrib><description>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mapping</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Evdoridis, Stavros</creatorcontrib><creatorcontrib>Saminathan Ponnusamy</creatorcontrib><creatorcontrib>Rasila, Antti</creatorcontrib><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><title>arXiv.org</title><description>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</description><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IGDUyE_tnGuKLq7l1BTm5ImaX4KfXs7-ABON9xxG5RRxkhxOVO6Q3kIA8aYVpyWJctQ_Rydt7N8Q217fwqgjJyS0Cou0FkP2rZC6wWSUbPQ0kTohR-tUS2MwjllPuGAtp3QQeY_7tHxfntdH8U6npIMsRls8mZVDcW84iUhmLP_qi_6Qjpc</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Evdoridis, Stavros</creator><creator>Saminathan Ponnusamy</creator><creator>Rasila, Antti</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170926</creationdate><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><author>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20767511073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Evdoridis, Stavros</creatorcontrib><creatorcontrib>Saminathan Ponnusamy</creatorcontrib><creatorcontrib>Rasila, Antti</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evdoridis, Stavros</au><au>Saminathan Ponnusamy</au><au>Rasila, Antti</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Bohr's inequality for locally univalent harmonic mappings</atitle><jtitle>arXiv.org</jtitle><date>2017-09-26</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076751107
source Free E- Journals
subjects Mapping
title Improved Bohr's inequality for locally univalent harmonic mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Bohr's%20inequality%20for%20locally%20univalent%20harmonic%20mappings&rft.jtitle=arXiv.org&rft.au=Evdoridis,%20Stavros&rft.date=2017-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076751107%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076751107&rft_id=info:pmid/&rfr_iscdi=true