Improved Bohr's inequality for locally univalent harmonic mappings
We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, fo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Evdoridis, Stavros Saminathan Ponnusamy Rasila, Antti |
description | We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076751107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076751107</sourcerecordid><originalsourceid>FETCH-proquest_journals_20767511073</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IGDUyE_tnGuKLq7l1BTm5ImaX4KfXs7-ABON9xxG5RRxkhxOVO6Q3kIA8aYVpyWJctQ_Rydt7N8Q217fwqgjJyS0Cou0FkP2rZC6wWSUbPQ0kTohR-tUS2MwjllPuGAtp3QQeY_7tHxfntdH8U6npIMsRls8mZVDcW84iUhmLP_qi_6Qjpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076751107</pqid></control><display><type>article</type><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><source>Free E- Journals</source><creator>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</creator><creatorcontrib>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</creatorcontrib><description>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mapping</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Evdoridis, Stavros</creatorcontrib><creatorcontrib>Saminathan Ponnusamy</creatorcontrib><creatorcontrib>Rasila, Antti</creatorcontrib><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><title>arXiv.org</title><description>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</description><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IGDUyE_tnGuKLq7l1BTm5ImaX4KfXs7-ABON9xxG5RRxkhxOVO6Q3kIA8aYVpyWJctQ_Rydt7N8Q217fwqgjJyS0Cou0FkP2rZC6wWSUbPQ0kTohR-tUS2MwjllPuGAtp3QQeY_7tHxfntdH8U6npIMsRls8mZVDcW84iUhmLP_qi_6Qjpc</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Evdoridis, Stavros</creator><creator>Saminathan Ponnusamy</creator><creator>Rasila, Antti</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170926</creationdate><title>Improved Bohr's inequality for locally univalent harmonic mappings</title><author>Evdoridis, Stavros ; Saminathan Ponnusamy ; Rasila, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20767511073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Evdoridis, Stavros</creatorcontrib><creatorcontrib>Saminathan Ponnusamy</creatorcontrib><creatorcontrib>Rasila, Antti</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evdoridis, Stavros</au><au>Saminathan Ponnusamy</au><au>Rasila, Antti</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Bohr's inequality for locally univalent harmonic mappings</atitle><jtitle>arXiv.org</jtitle><date>2017-09-26</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We prove several improved versions of Bohr's inequality for the harmonic mappings of the form \(f=h+\overline{g}\), where \(h\) is bounded by 1 and \(|g'(z)|\le|h'(z)|\). The improvements are obtained along the lines of an earlier work of Kayumov and Ponnusamy, i.e. \cite{KayPon2}, for example a term related to the area of the image of the disk \(D(0,r)\) under the mapping \(f\) is considered. Our results are sharp. In addition, further improvements of the main results for certain special classes of harmonic mappings are provided.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076751107 |
source | Free E- Journals |
subjects | Mapping |
title | Improved Bohr's inequality for locally univalent harmonic mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Bohr's%20inequality%20for%20locally%20univalent%20harmonic%20mappings&rft.jtitle=arXiv.org&rft.au=Evdoridis,%20Stavros&rft.date=2017-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076751107%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076751107&rft_id=info:pmid/&rfr_iscdi=true |