Toward a System Building Agenda for Data Integration
In this paper we argue that the data management community should devote far more effort to building data integration (DI) systems, in order to truly advance the field. Toward this goal, we make three contributions. First, we draw on our recent industrial experience to discuss the limitations of curr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-09 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Doan, AnHai Ardalan, Adel Ballard, Jeffrey R Das, Sanjib Govind, Yash Konda, Pradap Li, Han Paulson, Erik Paul Suganthan G C Zhang, Haojun |
description | In this paper we argue that the data management community should devote far more effort to building data integration (DI) systems, in order to truly advance the field. Toward this goal, we make three contributions. First, we draw on our recent industrial experience to discuss the limitations of current DI systems. Second, we propose an agenda to build a new kind of DI systems to address these limitations. These systems guide users through the DI workflow, step by step. They provide tools to address the "pain points" of the steps, and tools are built on top of the Python data science and Big Data ecosystem (PyData). We discuss how to foster an ecosystem of such tools within PyData, then use it to build DI systems for collaborative/cloud/crowd/lay user settings. Finally, we discuss ongoing work at Wisconsin, which suggests that these DI systems are highly promising and building them raises many interesting research challenges. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076745526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076745526</sourcerecordid><originalsourceid>FETCH-proquest_journals_20767455263</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLsSTJnX1is52LweShpaaaC6Ib6-DD-D0D98_YwUKsam2NeKClTGOnHNUDUopCla3_kVBA8HtHZO5wz4Pkx6chZ01ThP0PsCREsHVJWMDpcG7FZv3NEVT_rpk6_OpPVyqR_DPbGLqRp-D-1KHvFFNLSUq8d_1AQZlM_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076745526</pqid></control><display><type>article</type><title>Toward a System Building Agenda for Data Integration</title><source>Free E- Journals</source><creator>Doan, AnHai ; Ardalan, Adel ; Ballard, Jeffrey R ; Das, Sanjib ; Govind, Yash ; Konda, Pradap ; Li, Han ; Paulson, Erik ; Paul Suganthan G C ; Zhang, Haojun</creator><creatorcontrib>Doan, AnHai ; Ardalan, Adel ; Ballard, Jeffrey R ; Das, Sanjib ; Govind, Yash ; Konda, Pradap ; Li, Han ; Paulson, Erik ; Paul Suganthan G C ; Zhang, Haojun</creatorcontrib><description>In this paper we argue that the data management community should devote far more effort to building data integration (DI) systems, in order to truly advance the field. Toward this goal, we make three contributions. First, we draw on our recent industrial experience to discuss the limitations of current DI systems. Second, we propose an agenda to build a new kind of DI systems to address these limitations. These systems guide users through the DI workflow, step by step. They provide tools to address the "pain points" of the steps, and tools are built on top of the Python data science and Big Data ecosystem (PyData). We discuss how to foster an ecosystem of such tools within PyData, then use it to build DI systems for collaborative/cloud/crowd/lay user settings. Finally, we discuss ongoing work at Wisconsin, which suggests that these DI systems are highly promising and building them raises many interesting research challenges.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data integration ; Data management ; Workflow</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Doan, AnHai</creatorcontrib><creatorcontrib>Ardalan, Adel</creatorcontrib><creatorcontrib>Ballard, Jeffrey R</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Govind, Yash</creatorcontrib><creatorcontrib>Konda, Pradap</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Paulson, Erik</creatorcontrib><creatorcontrib>Paul Suganthan G C</creatorcontrib><creatorcontrib>Zhang, Haojun</creatorcontrib><title>Toward a System Building Agenda for Data Integration</title><title>arXiv.org</title><description>In this paper we argue that the data management community should devote far more effort to building data integration (DI) systems, in order to truly advance the field. Toward this goal, we make three contributions. First, we draw on our recent industrial experience to discuss the limitations of current DI systems. Second, we propose an agenda to build a new kind of DI systems to address these limitations. These systems guide users through the DI workflow, step by step. They provide tools to address the "pain points" of the steps, and tools are built on top of the Python data science and Big Data ecosystem (PyData). We discuss how to foster an ecosystem of such tools within PyData, then use it to build DI systems for collaborative/cloud/crowd/lay user settings. Finally, we discuss ongoing work at Wisconsin, which suggests that these DI systems are highly promising and building them raises many interesting research challenges.</description><subject>Data integration</subject><subject>Data management</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLsSTJnX1is52LweShpaaaC6Ib6-DD-D0D98_YwUKsam2NeKClTGOnHNUDUopCla3_kVBA8HtHZO5wz4Pkx6chZ01ThP0PsCREsHVJWMDpcG7FZv3NEVT_rpk6_OpPVyqR_DPbGLqRp-D-1KHvFFNLSUq8d_1AQZlM_s</recordid><startdate>20170929</startdate><enddate>20170929</enddate><creator>Doan, AnHai</creator><creator>Ardalan, Adel</creator><creator>Ballard, Jeffrey R</creator><creator>Das, Sanjib</creator><creator>Govind, Yash</creator><creator>Konda, Pradap</creator><creator>Li, Han</creator><creator>Paulson, Erik</creator><creator>Paul Suganthan G C</creator><creator>Zhang, Haojun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170929</creationdate><title>Toward a System Building Agenda for Data Integration</title><author>Doan, AnHai ; Ardalan, Adel ; Ballard, Jeffrey R ; Das, Sanjib ; Govind, Yash ; Konda, Pradap ; Li, Han ; Paulson, Erik ; Paul Suganthan G C ; Zhang, Haojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20767455263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data integration</topic><topic>Data management</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Doan, AnHai</creatorcontrib><creatorcontrib>Ardalan, Adel</creatorcontrib><creatorcontrib>Ballard, Jeffrey R</creatorcontrib><creatorcontrib>Das, Sanjib</creatorcontrib><creatorcontrib>Govind, Yash</creatorcontrib><creatorcontrib>Konda, Pradap</creatorcontrib><creatorcontrib>Li, Han</creatorcontrib><creatorcontrib>Paulson, Erik</creatorcontrib><creatorcontrib>Paul Suganthan G C</creatorcontrib><creatorcontrib>Zhang, Haojun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, AnHai</au><au>Ardalan, Adel</au><au>Ballard, Jeffrey R</au><au>Das, Sanjib</au><au>Govind, Yash</au><au>Konda, Pradap</au><au>Li, Han</au><au>Paulson, Erik</au><au>Paul Suganthan G C</au><au>Zhang, Haojun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Toward a System Building Agenda for Data Integration</atitle><jtitle>arXiv.org</jtitle><date>2017-09-29</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this paper we argue that the data management community should devote far more effort to building data integration (DI) systems, in order to truly advance the field. Toward this goal, we make three contributions. First, we draw on our recent industrial experience to discuss the limitations of current DI systems. Second, we propose an agenda to build a new kind of DI systems to address these limitations. These systems guide users through the DI workflow, step by step. They provide tools to address the "pain points" of the steps, and tools are built on top of the Python data science and Big Data ecosystem (PyData). We discuss how to foster an ecosystem of such tools within PyData, then use it to build DI systems for collaborative/cloud/crowd/lay user settings. Finally, we discuss ongoing work at Wisconsin, which suggests that these DI systems are highly promising and building them raises many interesting research challenges.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076745526 |
source | Free E- Journals |
subjects | Data integration Data management Workflow |
title | Toward a System Building Agenda for Data Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Toward%20a%20System%20Building%20Agenda%20for%20Data%20Integration&rft.jtitle=arXiv.org&rft.au=Doan,%20AnHai&rft.date=2017-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076745526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076745526&rft_id=info:pmid/&rfr_iscdi=true |