Compactness of Fourier Integral Operators on weighted modulation spaces

Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Fernández, Carmen, Galbis, Antonio, Primo, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fernández, Carmen
Galbis, Antonio
Primo, Eva
description Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076602664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076602664</sourcerecordid><originalsourceid>FETCH-proquest_journals_20766026643</originalsourceid><addsrcrecordid>eNqNjrEKwjAYhIMgWLTvEHAuxKRN3YtVJxf3EuzfNiVNav4EX98MPoDTwX13x21IxoU4FeeS8x3JEWfGGJc1ryqRkWvjllW9ggVE6gbauug1eHq3AUavDH2s4FVwPlFLP6DHKUBPF9dHo4JOHqY64IFsB2UQ8p_uybG9PJtbsXr3joChm9OyTajjrJYyPZCl-C_1BT29PCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076602664</pqid></control><display><type>article</type><title>Compactness of Fourier Integral Operators on weighted modulation spaces</title><source>Freely Accessible Journals</source><creator>Fernández, Carmen ; Galbis, Antonio ; Primo, Eva</creator><creatorcontrib>Fernández, Carmen ; Galbis, Antonio ; Primo, Eva</creatorcontrib><description>Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integrals ; Matrix representation ; Modulation ; Operators (mathematics)</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fernández, Carmen</creatorcontrib><creatorcontrib>Galbis, Antonio</creatorcontrib><creatorcontrib>Primo, Eva</creatorcontrib><title>Compactness of Fourier Integral Operators on weighted modulation spaces</title><title>arXiv.org</title><description>Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.</description><subject>Integrals</subject><subject>Matrix representation</subject><subject>Modulation</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrEKwjAYhIMgWLTvEHAuxKRN3YtVJxf3EuzfNiVNav4EX98MPoDTwX13x21IxoU4FeeS8x3JEWfGGJc1ryqRkWvjllW9ggVE6gbauug1eHq3AUavDH2s4FVwPlFLP6DHKUBPF9dHo4JOHqY64IFsB2UQ8p_uybG9PJtbsXr3joChm9OyTajjrJYyPZCl-C_1BT29PCk</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Fernández, Carmen</creator><creator>Galbis, Antonio</creator><creator>Primo, Eva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171017</creationdate><title>Compactness of Fourier Integral Operators on weighted modulation spaces</title><author>Fernández, Carmen ; Galbis, Antonio ; Primo, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20766026643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Integrals</topic><topic>Matrix representation</topic><topic>Modulation</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Carmen</creatorcontrib><creatorcontrib>Galbis, Antonio</creatorcontrib><creatorcontrib>Primo, Eva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Carmen</au><au>Galbis, Antonio</au><au>Primo, Eva</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Compactness of Fourier Integral Operators on weighted modulation spaces</atitle><jtitle>arXiv.org</jtitle><date>2017-10-17</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076602664
source Freely Accessible Journals
subjects Integrals
Matrix representation
Modulation
Operators (mathematics)
title Compactness of Fourier Integral Operators on weighted modulation spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Compactness%20of%20Fourier%20Integral%20Operators%20on%20weighted%20modulation%20spaces&rft.jtitle=arXiv.org&rft.au=Fern%C3%A1ndez,%20Carmen&rft.date=2017-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076602664%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076602664&rft_id=info:pmid/&rfr_iscdi=true