Agents and stream data mining: a new perspective

Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2005-05, Vol.20 (3), p.60-67
Hauptverfasser: Kok-Leong, Ong, Zhang, Zili, Wee-Keong Ng, Ee-Peng, Lim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 3
container_start_page 60
container_title IEEE intelligent systems
container_volume 20
creator Kok-Leong, Ong
Zhang, Zili
Wee-Keong Ng
Ee-Peng, Lim
description Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.
doi_str_mv 10.1109/MIS.2005.39
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_207655379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1439481</ieee_id><sourcerecordid>57635497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtbqyaOXRdCLtE4yySbxVoofhYoH9Ryyu9myZb9Mtor_3l1aKHjRUwbyzMDMS8g5hSmloG-fF69TBiCmqA_IiGpOJ5RpftjXYqhjyY7JSQhrAIZA1YjAbOXqLkS2zqLQeWerKLOdjaqiLurVXWSj2n1FrfOhdWlXfLpTcpTbMriz3Tsm7w_3b_OnyfLlcTGfLScpB-wmErmlPMUMBE8gS7VQNskylNZmOoNcSYpUJoxZxRXlDBFzN_BEJsAUxTG53s5tffOxcaEzVRFSV5a2ds0mGCFjFFzLPyFTEoGD-AcUyIXiPbz8BdfNxtf9toaBjIVAqXt0s0Wpb0LwLjetLyrrvw0FM4Rh-jDMEIbBQV_tRtqQ2jL3tk6LsG-JFRWCxb272LrCObf_5qj7K-EP-jSOog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207655379</pqid></control><display><type>article</type><title>Agents and stream data mining: a new perspective</title><source>IEEE Electronic Library (IEL)</source><creator>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</creator><creatorcontrib>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</creatorcontrib><description>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</description><identifier>ISSN: 1541-1672</identifier><identifier>ISSN: 1094-7167</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2005.39</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Australia ; Competitive intelligence ; Computer science; control theory; systems ; Computerized information storage and retrieval ; cooperative hybrid systems ; Data mining ; Data processing. List processing. Character string processing ; Design methodology ; Exact sciences and technology ; Human factors ; Information processing ; Intelligent agents ; Internet ; Memory organisation. Data processing ; Mining industry ; Mobile computing ; Searching ; Software ; software agents ; Streaming media ; World Wide Web</subject><ispartof>IEEE intelligent systems, 2005-05, Vol.20 (3), p.60-67</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May/Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</citedby><cites>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1439481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1439481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16815526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kok-Leong, Ong</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng, Lim</creatorcontrib><title>Agents and stream data mining: a new perspective</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Australia</subject><subject>Competitive intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computerized information storage and retrieval</subject><subject>cooperative hybrid systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Design methodology</subject><subject>Exact sciences and technology</subject><subject>Human factors</subject><subject>Information processing</subject><subject>Intelligent agents</subject><subject>Internet</subject><subject>Memory organisation. Data processing</subject><subject>Mining industry</subject><subject>Mobile computing</subject><subject>Searching</subject><subject>Software</subject><subject>software agents</subject><subject>Streaming media</subject><subject>World Wide Web</subject><issn>1541-1672</issn><issn>1094-7167</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1LAzEQBuAgCtbqyaOXRdCLtE4yySbxVoofhYoH9Ryyu9myZb9Mtor_3l1aKHjRUwbyzMDMS8g5hSmloG-fF69TBiCmqA_IiGpOJ5RpftjXYqhjyY7JSQhrAIZA1YjAbOXqLkS2zqLQeWerKLOdjaqiLurVXWSj2n1FrfOhdWlXfLpTcpTbMriz3Tsm7w_3b_OnyfLlcTGfLScpB-wmErmlPMUMBE8gS7VQNskylNZmOoNcSYpUJoxZxRXlDBFzN_BEJsAUxTG53s5tffOxcaEzVRFSV5a2ds0mGCFjFFzLPyFTEoGD-AcUyIXiPbz8BdfNxtf9toaBjIVAqXt0s0Wpb0LwLjetLyrrvw0FM4Rh-jDMEIbBQV_tRtqQ2jL3tk6LsG-JFRWCxb272LrCObf_5qj7K-EP-jSOog</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Kok-Leong, Ong</creator><creator>Zhang, Zili</creator><creator>Wee-Keong Ng</creator><creator>Ee-Peng, Lim</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050501</creationdate><title>Agents and stream data mining: a new perspective</title><author>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Australia</topic><topic>Competitive intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computerized information storage and retrieval</topic><topic>cooperative hybrid systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Design methodology</topic><topic>Exact sciences and technology</topic><topic>Human factors</topic><topic>Information processing</topic><topic>Intelligent agents</topic><topic>Internet</topic><topic>Memory organisation. Data processing</topic><topic>Mining industry</topic><topic>Mobile computing</topic><topic>Searching</topic><topic>Software</topic><topic>software agents</topic><topic>Streaming media</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok-Leong, Ong</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng, Lim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kok-Leong, Ong</au><au>Zhang, Zili</au><au>Wee-Keong Ng</au><au>Ee-Peng, Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agents and stream data mining: a new perspective</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>20</volume><issue>3</issue><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>1541-1672</issn><issn>1094-7167</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/MIS.2005.39</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2005-05, Vol.20 (3), p.60-67
issn 1541-1672
1094-7167
1941-1294
language eng
recordid cdi_proquest_journals_207655379
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Australia
Competitive intelligence
Computer science
control theory
systems
Computerized information storage and retrieval
cooperative hybrid systems
Data mining
Data processing. List processing. Character string processing
Design methodology
Exact sciences and technology
Human factors
Information processing
Intelligent agents
Internet
Memory organisation. Data processing
Mining industry
Mobile computing
Searching
Software
software agents
Streaming media
World Wide Web
title Agents and stream data mining: a new perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agents%20and%20stream%20data%20mining:%20a%20new%20perspective&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Kok-Leong,%20Ong&rft.date=2005-05-01&rft.volume=20&rft.issue=3&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2005.39&rft_dat=%3Cproquest_RIE%3E57635497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207655379&rft_id=info:pmid/&rft_ieee_id=1439481&rfr_iscdi=true