Agents and stream data mining: a new perspective
Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organization...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2005-05, Vol.20 (3), p.60-67 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 3 |
container_start_page | 60 |
container_title | IEEE intelligent systems |
container_volume | 20 |
creator | Kok-Leong, Ong Zhang, Zili Wee-Keong Ng Ee-Peng, Lim |
description | Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project. |
doi_str_mv | 10.1109/MIS.2005.39 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_207655379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1439481</ieee_id><sourcerecordid>57635497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtbqyaOXRdCLtE4yySbxVoofhYoH9Ryyu9myZb9Mtor_3l1aKHjRUwbyzMDMS8g5hSmloG-fF69TBiCmqA_IiGpOJ5RpftjXYqhjyY7JSQhrAIZA1YjAbOXqLkS2zqLQeWerKLOdjaqiLurVXWSj2n1FrfOhdWlXfLpTcpTbMriz3Tsm7w_3b_OnyfLlcTGfLScpB-wmErmlPMUMBE8gS7VQNskylNZmOoNcSYpUJoxZxRXlDBFzN_BEJsAUxTG53s5tffOxcaEzVRFSV5a2ds0mGCFjFFzLPyFTEoGD-AcUyIXiPbz8BdfNxtf9toaBjIVAqXt0s0Wpb0LwLjetLyrrvw0FM4Rh-jDMEIbBQV_tRtqQ2jL3tk6LsG-JFRWCxb272LrCObf_5qj7K-EP-jSOog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207655379</pqid></control><display><type>article</type><title>Agents and stream data mining: a new perspective</title><source>IEEE Electronic Library (IEL)</source><creator>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</creator><creatorcontrib>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</creatorcontrib><description>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</description><identifier>ISSN: 1541-1672</identifier><identifier>ISSN: 1094-7167</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2005.39</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Australia ; Competitive intelligence ; Computer science; control theory; systems ; Computerized information storage and retrieval ; cooperative hybrid systems ; Data mining ; Data processing. List processing. Character string processing ; Design methodology ; Exact sciences and technology ; Human factors ; Information processing ; Intelligent agents ; Internet ; Memory organisation. Data processing ; Mining industry ; Mobile computing ; Searching ; Software ; software agents ; Streaming media ; World Wide Web</subject><ispartof>IEEE intelligent systems, 2005-05, Vol.20 (3), p.60-67</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May/Jun 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</citedby><cites>FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1439481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1439481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16815526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kok-Leong, Ong</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng, Lim</creatorcontrib><title>Agents and stream data mining: a new perspective</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Australia</subject><subject>Competitive intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computerized information storage and retrieval</subject><subject>cooperative hybrid systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Design methodology</subject><subject>Exact sciences and technology</subject><subject>Human factors</subject><subject>Information processing</subject><subject>Intelligent agents</subject><subject>Internet</subject><subject>Memory organisation. Data processing</subject><subject>Mining industry</subject><subject>Mobile computing</subject><subject>Searching</subject><subject>Software</subject><subject>software agents</subject><subject>Streaming media</subject><subject>World Wide Web</subject><issn>1541-1672</issn><issn>1094-7167</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1LAzEQBuAgCtbqyaOXRdCLtE4yySbxVoofhYoH9Ryyu9myZb9Mtor_3l1aKHjRUwbyzMDMS8g5hSmloG-fF69TBiCmqA_IiGpOJ5RpftjXYqhjyY7JSQhrAIZA1YjAbOXqLkS2zqLQeWerKLOdjaqiLurVXWSj2n1FrfOhdWlXfLpTcpTbMriz3Tsm7w_3b_OnyfLlcTGfLScpB-wmErmlPMUMBE8gS7VQNskylNZmOoNcSYpUJoxZxRXlDBFzN_BEJsAUxTG53s5tffOxcaEzVRFSV5a2ds0mGCFjFFzLPyFTEoGD-AcUyIXiPbz8BdfNxtf9toaBjIVAqXt0s0Wpb0LwLjetLyrrvw0FM4Rh-jDMEIbBQV_tRtqQ2jL3tk6LsG-JFRWCxb272LrCObf_5qj7K-EP-jSOog</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Kok-Leong, Ong</creator><creator>Zhang, Zili</creator><creator>Wee-Keong Ng</creator><creator>Ee-Peng, Lim</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050501</creationdate><title>Agents and stream data mining: a new perspective</title><author>Kok-Leong, Ong ; Zhang, Zili ; Wee-Keong Ng ; Ee-Peng, Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-734a14c3d054b0dc958abdd37aad9d0f871317b22a848142333fec3d0b7b02813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Australia</topic><topic>Competitive intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computerized information storage and retrieval</topic><topic>cooperative hybrid systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Design methodology</topic><topic>Exact sciences and technology</topic><topic>Human factors</topic><topic>Information processing</topic><topic>Intelligent agents</topic><topic>Internet</topic><topic>Memory organisation. Data processing</topic><topic>Mining industry</topic><topic>Mobile computing</topic><topic>Searching</topic><topic>Software</topic><topic>software agents</topic><topic>Streaming media</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok-Leong, Ong</creatorcontrib><creatorcontrib>Zhang, Zili</creatorcontrib><creatorcontrib>Wee-Keong Ng</creatorcontrib><creatorcontrib>Ee-Peng, Lim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kok-Leong, Ong</au><au>Zhang, Zili</au><au>Wee-Keong Ng</au><au>Ee-Peng, Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agents and stream data mining: a new perspective</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2005-05-01</date><risdate>2005</risdate><volume>20</volume><issue>3</issue><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>1541-1672</issn><issn>1094-7167</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Many organizations struggle with the massive amount of data they collect. Today, data does more than serve as the ingredients for churning out statistical reports. They help support efficient operations in many organizations, and to some extent, data provide the competitive intelligence organizations need to survive in today's economy. Data mining can't always deliver timely and relevant results because data are constantly changing. However, stream-data processing might be more effective, judging by the Matrix project.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/MIS.2005.39</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2005-05, Vol.20 (3), p.60-67 |
issn | 1541-1672 1094-7167 1941-1294 |
language | eng |
recordid | cdi_proquest_journals_207655379 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Australia Competitive intelligence Computer science control theory systems Computerized information storage and retrieval cooperative hybrid systems Data mining Data processing. List processing. Character string processing Design methodology Exact sciences and technology Human factors Information processing Intelligent agents Internet Memory organisation. Data processing Mining industry Mobile computing Searching Software software agents Streaming media World Wide Web |
title | Agents and stream data mining: a new perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agents%20and%20stream%20data%20mining:%20a%20new%20perspective&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Kok-Leong,%20Ong&rft.date=2005-05-01&rft.volume=20&rft.issue=3&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2005.39&rft_dat=%3Cproquest_RIE%3E57635497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207655379&rft_id=info:pmid/&rft_ieee_id=1439481&rfr_iscdi=true |