Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection
We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian spher...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kluger, Florian Ackermann, Hanno Yang, Michael Ying Rosenhahn, Bodo |
description | We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076456380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076456380</sourcerecordid><originalsourceid>FETCH-proquest_journals_20764563803</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC6EJO-9tYXuOhC3ZZSppqiMzVJ_X4t-gGuDvfcMxGB0noV5bFSMxE610kpVZqpJNGBKAvEHo5YWzJ0hZYtXGoy7jaukg15KNBj4w0TnN1oa4IDvdA6hB3xg8k0UFruvtFCTNv67jD8cS6W281pvY96y88Bna86Hix9rkrJLI2TVOdS_1e9AS_cPrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076456380</pqid></control><display><type>article</type><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><source>Free E- Journals</source><creator>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</creator><creatorcontrib>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</creatorcontrib><description>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Deep learning ; Gnomonic projection ; Image contrast ; Image detection ; Neural networks</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kluger, Florian</creatorcontrib><creatorcontrib>Ackermann, Hanno</creatorcontrib><creatorcontrib>Yang, Michael Ying</creatorcontrib><creatorcontrib>Rosenhahn, Bodo</creatorcontrib><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><title>arXiv.org</title><description>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Gnomonic projection</subject><subject>Image contrast</subject><subject>Image detection</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC6EJO-9tYXuOhC3ZZSppqiMzVJ_X4t-gGuDvfcMxGB0noV5bFSMxE610kpVZqpJNGBKAvEHo5YWzJ0hZYtXGoy7jaukg15KNBj4w0TnN1oa4IDvdA6hB3xg8k0UFruvtFCTNv67jD8cS6W281pvY96y88Bna86Hix9rkrJLI2TVOdS_1e9AS_cPrQ</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Kluger, Florian</creator><creator>Ackermann, Hanno</creator><creator>Yang, Michael Ying</creator><creator>Rosenhahn, Bodo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171116</creationdate><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><author>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20764563803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Gnomonic projection</topic><topic>Image contrast</topic><topic>Image detection</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kluger, Florian</creatorcontrib><creatorcontrib>Ackermann, Hanno</creatorcontrib><creatorcontrib>Yang, Michael Ying</creatorcontrib><creatorcontrib>Rosenhahn, Bodo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kluger, Florian</au><au>Ackermann, Hanno</au><au>Yang, Michael Ying</au><au>Rosenhahn, Bodo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</atitle><jtitle>arXiv.org</jtitle><date>2017-11-16</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076456380 |
source | Free E- Journals |
subjects | Algorithms Artificial neural networks Deep learning Gnomonic projection Image contrast Image detection Neural networks |
title | Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Learning%20for%20Vanishing%20Point%20Detection%20Using%20an%20Inverse%20Gnomonic%20Projection&rft.jtitle=arXiv.org&rft.au=Kluger,%20Florian&rft.date=2017-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076456380%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076456380&rft_id=info:pmid/&rfr_iscdi=true |