Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian spher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Kluger, Florian, Ackermann, Hanno, Yang, Michael Ying, Rosenhahn, Bodo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kluger, Florian
Ackermann, Hanno
Yang, Michael Ying
Rosenhahn, Bodo
description We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076456380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076456380</sourcerecordid><originalsourceid>FETCH-proquest_journals_20764563803</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC6EJO-9tYXuOhC3ZZSppqiMzVJ_X4t-gGuDvfcMxGB0noV5bFSMxE610kpVZqpJNGBKAvEHo5YWzJ0hZYtXGoy7jaukg15KNBj4w0TnN1oa4IDvdA6hB3xg8k0UFruvtFCTNv67jD8cS6W281pvY96y88Bna86Hix9rkrJLI2TVOdS_1e9AS_cPrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076456380</pqid></control><display><type>article</type><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><source>Free E- Journals</source><creator>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</creator><creatorcontrib>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</creatorcontrib><description>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Deep learning ; Gnomonic projection ; Image contrast ; Image detection ; Neural networks</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kluger, Florian</creatorcontrib><creatorcontrib>Ackermann, Hanno</creatorcontrib><creatorcontrib>Yang, Michael Ying</creatorcontrib><creatorcontrib>Rosenhahn, Bodo</creatorcontrib><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><title>arXiv.org</title><description>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Gnomonic projection</subject><subject>Image contrast</subject><subject>Image detection</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC6EJO-9tYXuOhC3ZZSppqiMzVJ_X4t-gGuDvfcMxGB0noV5bFSMxE610kpVZqpJNGBKAvEHo5YWzJ0hZYtXGoy7jaukg15KNBj4w0TnN1oa4IDvdA6hB3xg8k0UFruvtFCTNv67jD8cS6W281pvY96y88Bna86Hix9rkrJLI2TVOdS_1e9AS_cPrQ</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Kluger, Florian</creator><creator>Ackermann, Hanno</creator><creator>Yang, Michael Ying</creator><creator>Rosenhahn, Bodo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171116</creationdate><title>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</title><author>Kluger, Florian ; Ackermann, Hanno ; Yang, Michael Ying ; Rosenhahn, Bodo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20764563803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Gnomonic projection</topic><topic>Image contrast</topic><topic>Image detection</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kluger, Florian</creatorcontrib><creatorcontrib>Ackermann, Hanno</creatorcontrib><creatorcontrib>Yang, Michael Ying</creatorcontrib><creatorcontrib>Rosenhahn, Bodo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kluger, Florian</au><au>Ackermann, Hanno</au><au>Yang, Michael Ying</au><au>Rosenhahn, Bodo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection</atitle><jtitle>arXiv.org</jtitle><date>2017-11-16</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076456380
source Free E- Journals
subjects Algorithms
Artificial neural networks
Deep learning
Gnomonic projection
Image contrast
Image detection
Neural networks
title Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Learning%20for%20Vanishing%20Point%20Detection%20Using%20an%20Inverse%20Gnomonic%20Projection&rft.jtitle=arXiv.org&rft.au=Kluger,%20Florian&rft.date=2017-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076456380%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076456380&rft_id=info:pmid/&rfr_iscdi=true