Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval
•Augmented PANORAMA representation for 3D meshes.•Ensemble of CNNs for classification and retrieval.•Search and retrieval in large datasets of 3D meshes. A novel method for the classification and retrieval of 3D models is proposed; it exploits the 2D panoramic view representation of 3D models as inp...
Gespeichert in:
Veröffentlicht in: | Computers & graphics 2018-04, Vol.71, p.208-218 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 208 |
container_title | Computers & graphics |
container_volume | 71 |
creator | Sfikas, Konstantinos Pratikakis, Ioannis Theoharis, Theoharis |
description | •Augmented PANORAMA representation for 3D meshes.•Ensemble of CNNs for classification and retrieval.•Search and retrieval in large datasets of 3D meshes.
A novel method for the classification and retrieval of 3D models is proposed; it exploits the 2D panoramic view representation of 3D models as input to an ensemble of convolutional neural networks which automatically compute the features. The first step of the proposed pipeline, pose normalization is performed using the SYMPAN method, which is also computed on the panoramic view representation. In the training phase, three panoramic views corresponding to the major axes, are used for the training of an ensemble of convolutional neural networks. the panoramic views consist of 3-channel images, containing the Spatial Distribution Map, the Normals’ Deviation Map and the magnitude of the Normals’ Devation Map Gradient Image. The proposed method aims at capturing feature continuity of 3D models, while simultaneously minimizing data preprocessing via the construction of an augmented image representation. It is extensively tested in terms of classification and retrieval accuracy on two standard large scale datasets: ModelNet and ShapeNet.
[Display omitted] |
doi_str_mv | 10.1016/j.cag.2017.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076375075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097849317301978</els_id><sourcerecordid>2076375075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-19e16c72ae5cff00a5e649bfca99d17ef45efe11f0a8f6a68ca1184d5a13f89b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwAewssU7wzcNOxCoqT6lQhGBtOc41ckjjYidF_D0pZc1qNmdGo0PIObAYGPDLNtbqPU4YiBiSmDE4IDMoRBoJXmSHZMZYKaIiK9NjchJCyxhLEp7NSH3TB1zXHVJn6HP1tHqpHquoVgEbql2_dd04WNerjvY4-t8Yvpz_CNQ4T9NrunYNdlR3KgRrrFY7mqq-oR4Hb3GrulNyZFQX8Owv5-Tt9uZ1cR8tV3cPi2oZ6SzNhghKBK5FojDXxjCmcuRZWRutyrIBgSbL0SCAYaowXPFCK4Aia3IFqSnKOp2Ti_3uxrvPEcMgWzf66XqQCRM8FTkT-UTBntLeheDRyI23a-W_JTC5UylbOamUO5USEjmpnDpX-w5O97cWvQzaYq-xsR71IBtn_2n_AOSKfLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076375075</pqid></control><display><type>article</type><title>Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval</title><source>Elsevier ScienceDirect Journals</source><creator>Sfikas, Konstantinos ; Pratikakis, Ioannis ; Theoharis, Theoharis</creator><creatorcontrib>Sfikas, Konstantinos ; Pratikakis, Ioannis ; Theoharis, Theoharis</creatorcontrib><description>•Augmented PANORAMA representation for 3D meshes.•Ensemble of CNNs for classification and retrieval.•Search and retrieval in large datasets of 3D meshes.
A novel method for the classification and retrieval of 3D models is proposed; it exploits the 2D panoramic view representation of 3D models as input to an ensemble of convolutional neural networks which automatically compute the features. The first step of the proposed pipeline, pose normalization is performed using the SYMPAN method, which is also computed on the panoramic view representation. In the training phase, three panoramic views corresponding to the major axes, are used for the training of an ensemble of convolutional neural networks. the panoramic views consist of 3-channel images, containing the Spatial Distribution Map, the Normals’ Deviation Map and the magnitude of the Normals’ Devation Map Gradient Image. The proposed method aims at capturing feature continuity of 3D models, while simultaneously minimizing data preprocessing via the construction of an augmented image representation. It is extensively tested in terms of classification and retrieval accuracy on two standard large scale datasets: ModelNet and ShapeNet.
[Display omitted]</description><identifier>ISSN: 0097-8493</identifier><identifier>EISSN: 1873-7684</identifier><identifier>DOI: 10.1016/j.cag.2017.12.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D object classification ; 3D object retrieval ; Algorithms ; Artificial neural networks ; Computer animation ; Continuity (mathematics) ; Convolutional neural network ; Image classification ; Information retrieval ; Neural network ensemble ; Neural networks ; Panoramic views ; Representations ; Retrieval ; Spatial distribution ; Three dimensional models ; Training ; Two dimensional models</subject><ispartof>Computers & graphics, 2018-04, Vol.71, p.208-218</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-19e16c72ae5cff00a5e649bfca99d17ef45efe11f0a8f6a68ca1184d5a13f89b3</citedby><cites>FETCH-LOGICAL-c434t-19e16c72ae5cff00a5e649bfca99d17ef45efe11f0a8f6a68ca1184d5a13f89b3</cites><orcidid>0000-0002-9173-4557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cag.2017.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Sfikas, Konstantinos</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Theoharis, Theoharis</creatorcontrib><title>Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval</title><title>Computers & graphics</title><description>•Augmented PANORAMA representation for 3D meshes.•Ensemble of CNNs for classification and retrieval.•Search and retrieval in large datasets of 3D meshes.
A novel method for the classification and retrieval of 3D models is proposed; it exploits the 2D panoramic view representation of 3D models as input to an ensemble of convolutional neural networks which automatically compute the features. The first step of the proposed pipeline, pose normalization is performed using the SYMPAN method, which is also computed on the panoramic view representation. In the training phase, three panoramic views corresponding to the major axes, are used for the training of an ensemble of convolutional neural networks. the panoramic views consist of 3-channel images, containing the Spatial Distribution Map, the Normals’ Deviation Map and the magnitude of the Normals’ Devation Map Gradient Image. The proposed method aims at capturing feature continuity of 3D models, while simultaneously minimizing data preprocessing via the construction of an augmented image representation. It is extensively tested in terms of classification and retrieval accuracy on two standard large scale datasets: ModelNet and ShapeNet.
[Display omitted]</description><subject>3D object classification</subject><subject>3D object retrieval</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer animation</subject><subject>Continuity (mathematics)</subject><subject>Convolutional neural network</subject><subject>Image classification</subject><subject>Information retrieval</subject><subject>Neural network ensemble</subject><subject>Neural networks</subject><subject>Panoramic views</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Spatial distribution</subject><subject>Three dimensional models</subject><subject>Training</subject><subject>Two dimensional models</subject><issn>0097-8493</issn><issn>1873-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwAewssU7wzcNOxCoqT6lQhGBtOc41ckjjYidF_D0pZc1qNmdGo0PIObAYGPDLNtbqPU4YiBiSmDE4IDMoRBoJXmSHZMZYKaIiK9NjchJCyxhLEp7NSH3TB1zXHVJn6HP1tHqpHquoVgEbql2_dd04WNerjvY4-t8Yvpz_CNQ4T9NrunYNdlR3KgRrrFY7mqq-oR4Hb3GrulNyZFQX8Owv5-Tt9uZ1cR8tV3cPi2oZ6SzNhghKBK5FojDXxjCmcuRZWRutyrIBgSbL0SCAYaowXPFCK4Aia3IFqSnKOp2Ti_3uxrvPEcMgWzf66XqQCRM8FTkT-UTBntLeheDRyI23a-W_JTC5UylbOamUO5USEjmpnDpX-w5O97cWvQzaYq-xsR71IBtn_2n_AOSKfLQ</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Sfikas, Konstantinos</creator><creator>Pratikakis, Ioannis</creator><creator>Theoharis, Theoharis</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9173-4557</orcidid></search><sort><creationdate>201804</creationdate><title>Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval</title><author>Sfikas, Konstantinos ; Pratikakis, Ioannis ; Theoharis, Theoharis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-19e16c72ae5cff00a5e649bfca99d17ef45efe11f0a8f6a68ca1184d5a13f89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D object classification</topic><topic>3D object retrieval</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer animation</topic><topic>Continuity (mathematics)</topic><topic>Convolutional neural network</topic><topic>Image classification</topic><topic>Information retrieval</topic><topic>Neural network ensemble</topic><topic>Neural networks</topic><topic>Panoramic views</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Spatial distribution</topic><topic>Three dimensional models</topic><topic>Training</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sfikas, Konstantinos</creatorcontrib><creatorcontrib>Pratikakis, Ioannis</creatorcontrib><creatorcontrib>Theoharis, Theoharis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sfikas, Konstantinos</au><au>Pratikakis, Ioannis</au><au>Theoharis, Theoharis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval</atitle><jtitle>Computers & graphics</jtitle><date>2018-04</date><risdate>2018</risdate><volume>71</volume><spage>208</spage><epage>218</epage><pages>208-218</pages><issn>0097-8493</issn><eissn>1873-7684</eissn><abstract>•Augmented PANORAMA representation for 3D meshes.•Ensemble of CNNs for classification and retrieval.•Search and retrieval in large datasets of 3D meshes.
A novel method for the classification and retrieval of 3D models is proposed; it exploits the 2D panoramic view representation of 3D models as input to an ensemble of convolutional neural networks which automatically compute the features. The first step of the proposed pipeline, pose normalization is performed using the SYMPAN method, which is also computed on the panoramic view representation. In the training phase, three panoramic views corresponding to the major axes, are used for the training of an ensemble of convolutional neural networks. the panoramic views consist of 3-channel images, containing the Spatial Distribution Map, the Normals’ Deviation Map and the magnitude of the Normals’ Devation Map Gradient Image. The proposed method aims at capturing feature continuity of 3D models, while simultaneously minimizing data preprocessing via the construction of an augmented image representation. It is extensively tested in terms of classification and retrieval accuracy on two standard large scale datasets: ModelNet and ShapeNet.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cag.2017.12.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9173-4557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-8493 |
ispartof | Computers & graphics, 2018-04, Vol.71, p.208-218 |
issn | 0097-8493 1873-7684 |
language | eng |
recordid | cdi_proquest_journals_2076375075 |
source | Elsevier ScienceDirect Journals |
subjects | 3D object classification 3D object retrieval Algorithms Artificial neural networks Computer animation Continuity (mathematics) Convolutional neural network Image classification Information retrieval Neural network ensemble Neural networks Panoramic views Representations Retrieval Spatial distribution Three dimensional models Training Two dimensional models |
title | Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20of%20PANORAMA-based%20convolutional%20neural%20networks%20for%203D%20model%20classification%20and%20retrieval&rft.jtitle=Computers%20&%20graphics&rft.au=Sfikas,%20Konstantinos&rft.date=2018-04&rft.volume=71&rft.spage=208&rft.epage=218&rft.pages=208-218&rft.issn=0097-8493&rft.eissn=1873-7684&rft_id=info:doi/10.1016/j.cag.2017.12.001&rft_dat=%3Cproquest_cross%3E2076375075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076375075&rft_id=info:pmid/&rft_els_id=S0097849317301978&rfr_iscdi=true |