The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses

In this paper, we study the variational properties of two special orbits: the Schubart orbit and the Broucke-H\'{e}non orbit. We show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-H\'{e}non orbit. One of the main cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Kuang, Wentian, Ouyang, Tiancheng, Xie, Zhifu, Duokui Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kuang, Wentian
Ouyang, Tiancheng
Xie, Zhifu
Duokui Yan
description In this paper, we study the variational properties of two special orbits: the Schubart orbit and the Broucke-H\'{e}non orbit. We show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-H\'{e}non orbit. One of the main challenges is to prove that the Schubart orbit coincides with the action minimizer connecting a collinear configuration with a binary collision and an isosceles configuration. A new geometric argument is introduced to overcome this challenge.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076340634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076340634</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763406343</originalsourceid><addsrcrecordid>eNqNi0sKwjAYhIMgWLR3-MF1ISZ9uFaU7lzoXpL2l7a2SZsH4pE8hxcziAdwMczwzcyMRIzzTbJNGVuQ2NqOUsrygmUZj4i8NAg7o311x6R8v5RWoI1sHQhVgwvluWq8FMbB6Ytb9aVjL5QwIRrEROr6CaPRsscBHq1rACcvehiEtWhXZH4TvcX450uyPh4u-zIJj8mjdddOe6NCdWW0yHlKg_h_qw-Qe0Wv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076340634</pqid></control><display><type>article</type><title>The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses</title><source>Free E- Journals</source><creator>Kuang, Wentian ; Ouyang, Tiancheng ; Xie, Zhifu ; Duokui Yan</creator><creatorcontrib>Kuang, Wentian ; Ouyang, Tiancheng ; Xie, Zhifu ; Duokui Yan</creatorcontrib><description>In this paper, we study the variational properties of two special orbits: the Schubart orbit and the Broucke-H\'{e}non orbit. We show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-H\'{e}non orbit. One of the main challenges is to prove that the Schubart orbit coincides with the action minimizer connecting a collinear configuration with a binary collision and an isosceles configuration. A new geometric argument is introduced to overcome this challenge.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Three body problem</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kuang, Wentian</creatorcontrib><creatorcontrib>Ouyang, Tiancheng</creatorcontrib><creatorcontrib>Xie, Zhifu</creatorcontrib><creatorcontrib>Duokui Yan</creatorcontrib><title>The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses</title><title>arXiv.org</title><description>In this paper, we study the variational properties of two special orbits: the Schubart orbit and the Broucke-H\'{e}non orbit. We show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-H\'{e}non orbit. One of the main challenges is to prove that the Schubart orbit coincides with the action minimizer connecting a collinear configuration with a binary collision and an isosceles configuration. A new geometric argument is introduced to overcome this challenge.</description><subject>Configurations</subject><subject>Three body problem</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAYhIMgWLR3-MF1ISZ9uFaU7lzoXpL2l7a2SZsH4pE8hxcziAdwMczwzcyMRIzzTbJNGVuQ2NqOUsrygmUZj4i8NAg7o311x6R8v5RWoI1sHQhVgwvluWq8FMbB6Ytb9aVjL5QwIRrEROr6CaPRsscBHq1rACcvehiEtWhXZH4TvcX450uyPh4u-zIJj8mjdddOe6NCdWW0yHlKg_h_qw-Qe0Wv</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Kuang, Wentian</creator><creator>Ouyang, Tiancheng</creator><creator>Xie, Zhifu</creator><creator>Duokui Yan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171027</creationdate><title>The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses</title><author>Kuang, Wentian ; Ouyang, Tiancheng ; Xie, Zhifu ; Duokui Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763406343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Configurations</topic><topic>Three body problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Wentian</creatorcontrib><creatorcontrib>Ouyang, Tiancheng</creatorcontrib><creatorcontrib>Xie, Zhifu</creatorcontrib><creatorcontrib>Duokui Yan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Wentian</au><au>Ouyang, Tiancheng</au><au>Xie, Zhifu</au><au>Duokui Yan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses</atitle><jtitle>arXiv.org</jtitle><date>2017-10-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the variational properties of two special orbits: the Schubart orbit and the Broucke-H\'{e}non orbit. We show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-H\'{e}non orbit. One of the main challenges is to prove that the Schubart orbit coincides with the action minimizer connecting a collinear configuration with a binary collision and an isosceles configuration. A new geometric argument is introduced to overcome this challenge.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076340634
source Free E- Journals
subjects Configurations
Three body problem
title The Broucke-Hénon orbit and the Schubart Orbit in the planar three-body problem with equal masses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Broucke-H%C3%A9non%20orbit%20and%20the%20Schubart%20Orbit%20in%20the%20planar%20three-body%20problem%20with%20equal%20masses&rft.jtitle=arXiv.org&rft.au=Kuang,%20Wentian&rft.date=2017-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076340634%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076340634&rft_id=info:pmid/&rfr_iscdi=true