Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications

We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-12
Hauptverfasser: Pan, Leyuan, Le, Liang, Xu, Wei, Dong, Xiaodai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pan, Leyuan
Le, Liang
Xu, Wei
Dong, Xiaodai
description We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed channel estimation can approach the performance of fully-digital estimations depending on the degree of channel spatial correlation and the number of RF chains. Dealing with the hybrid channel estimation, the optimal combiner is theoretically derived by relaxing the constant-magnitude constraint in a specific single-training scenario, which is then extended to the design of combiners for multiple trainings by Sequential and Alternating methods. Further, we develop a technique to generate the phase-only RF combiners based on the corresponding unconstrained ones to satisfy the constant-magnitude constraints. The performance of the proposed hybrid channel estimation scheme is examined by simulations under both nonparametric and spatial channel models. The simulation results demonstrate that the estimated CSI can approach the performance of fully-digital estimations in terms of both mean square error and spectral efficiency. Moreover, a practical spatial channel covariance estimation method is proposed and its effectiveness in hybrid channel estimation is verified by simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076335493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076335493</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763354933</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgKOodBlwXamKtLqVWdFF04V5Gm9bUNKOZVvH2ingAV58Hj_c7oi-VmgTzqZQ9MWKuwjCUs1hGkeoLu_ZY6yf5K1AByQWd0xZSbkyNjSEHBXnYvE7e5LB0aKkM0OXBypSmQQt7T2fNbFwJqcOT1Tlk-OGHhmyb7SChum6dOX9bPBTdAi3r0W8HYrxOD8kmuHm6t5qbY0Wt_7zwUYbxTKloulDqP-sNTHxI3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076335493</pqid></control><display><type>article</type><title>Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications</title><source>Free E- Journals</source><creator>Pan, Leyuan ; Le, Liang ; Xu, Wei ; Dong, Xiaodai</creator><creatorcontrib>Pan, Leyuan ; Le, Liang ; Xu, Wei ; Dong, Xiaodai</creatorcontrib><description>We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed channel estimation can approach the performance of fully-digital estimations depending on the degree of channel spatial correlation and the number of RF chains. Dealing with the hybrid channel estimation, the optimal combiner is theoretically derived by relaxing the constant-magnitude constraint in a specific single-training scenario, which is then extended to the design of combiners for multiple trainings by Sequential and Alternating methods. Further, we develop a technique to generate the phase-only RF combiners based on the corresponding unconstrained ones to satisfy the constant-magnitude constraints. The performance of the proposed hybrid channel estimation scheme is examined by simulations under both nonparametric and spatial channel models. The simulation results demonstrate that the estimated CSI can approach the performance of fully-digital estimations in terms of both mean square error and spectral efficiency. Moreover, a practical spatial channel covariance estimation method is proposed and its effectiveness in hybrid channel estimation is verified by simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains ; Computer simulation ; Covariance ; Hybrid systems ; MIMO communication ; Radio frequency</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pan, Leyuan</creatorcontrib><creatorcontrib>Le, Liang</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Dong, Xiaodai</creatorcontrib><title>Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications</title><title>arXiv.org</title><description>We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed channel estimation can approach the performance of fully-digital estimations depending on the degree of channel spatial correlation and the number of RF chains. Dealing with the hybrid channel estimation, the optimal combiner is theoretically derived by relaxing the constant-magnitude constraint in a specific single-training scenario, which is then extended to the design of combiners for multiple trainings by Sequential and Alternating methods. Further, we develop a technique to generate the phase-only RF combiners based on the corresponding unconstrained ones to satisfy the constant-magnitude constraints. The performance of the proposed hybrid channel estimation scheme is examined by simulations under both nonparametric and spatial channel models. The simulation results demonstrate that the estimated CSI can approach the performance of fully-digital estimations in terms of both mean square error and spectral efficiency. Moreover, a practical spatial channel covariance estimation method is proposed and its effectiveness in hybrid channel estimation is verified by simulations.</description><subject>Chains</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Hybrid systems</subject><subject>MIMO communication</subject><subject>Radio frequency</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQRYMgKOodBlwXamKtLqVWdFF04V5Gm9bUNKOZVvH2ingAV58Hj_c7oi-VmgTzqZQ9MWKuwjCUs1hGkeoLu_ZY6yf5K1AByQWd0xZSbkyNjSEHBXnYvE7e5LB0aKkM0OXBypSmQQt7T2fNbFwJqcOT1Tlk-OGHhmyb7SChum6dOX9bPBTdAi3r0W8HYrxOD8kmuHm6t5qbY0Wt_7zwUYbxTKloulDqP-sNTHxI3w</recordid><startdate>20171223</startdate><enddate>20171223</enddate><creator>Pan, Leyuan</creator><creator>Le, Liang</creator><creator>Xu, Wei</creator><creator>Dong, Xiaodai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171223</creationdate><title>Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications</title><author>Pan, Leyuan ; Le, Liang ; Xu, Wei ; Dong, Xiaodai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763354933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chains</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Hybrid systems</topic><topic>MIMO communication</topic><topic>Radio frequency</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Leyuan</creatorcontrib><creatorcontrib>Le, Liang</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Dong, Xiaodai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Leyuan</au><au>Le, Liang</au><au>Xu, Wei</au><au>Dong, Xiaodai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications</atitle><jtitle>arXiv.org</jtitle><date>2017-12-23</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed channel estimation can approach the performance of fully-digital estimations depending on the degree of channel spatial correlation and the number of RF chains. Dealing with the hybrid channel estimation, the optimal combiner is theoretically derived by relaxing the constant-magnitude constraint in a specific single-training scenario, which is then extended to the design of combiners for multiple trainings by Sequential and Alternating methods. Further, we develop a technique to generate the phase-only RF combiners based on the corresponding unconstrained ones to satisfy the constant-magnitude constraints. The performance of the proposed hybrid channel estimation scheme is examined by simulations under both nonparametric and spatial channel models. The simulation results demonstrate that the estimated CSI can approach the performance of fully-digital estimations in terms of both mean square error and spectral efficiency. Moreover, a practical spatial channel covariance estimation method is proposed and its effectiveness in hybrid channel estimation is verified by simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076335493
source Free E- Journals
subjects Chains
Computer simulation
Covariance
Hybrid systems
MIMO communication
Radio frequency
title Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Framework%20of%20Channel%20Estimation%20for%20Hybrid%20Analog-and-Digital%20Processing%20Enabled%20Massive%20MIMO%20Communications&rft.jtitle=arXiv.org&rft.au=Pan,%20Leyuan&rft.date=2017-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076335493%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076335493&rft_id=info:pmid/&rfr_iscdi=true