Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55

We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-10
Hauptverfasser: Li, Yi, Shao, Lin, Savva, Manolis, Huang, Haibin, Zhou, Yang, Wang, Qirui, Graham, Benjamin, Engelcke, Martin, Klokov, Roman, Lempitsky, Victor, Gan, Yuan, Wang, Pengyu, Liu, Kun, Yu, Fenggen, Panpan Shui, Hu, Bingyang, Zhang, Yan, Li, Yangyan, Bu, Rui, Sun, Mingchao, Wu, Wei, Jeong, Minki, Choi, Jaehoon, Kim, Changick, Angom Geetchandra, Murthy, Narasimha, Bhargava Ramu, Bharadwaj Manda, Ramanathan, M, Kumar, Gautam, Preetham, P, Srivastava, Siddharth, Bhugra, Swati, Lall, Brejesh, Haene, Christian, Tulsiani, Shubham, Malik, Jitendra, Lafer, Jared, Jones, Ramsey, Li, Siyuan, Lu, Jie, Shi, Jin, Yu, Jingyi, Huang, Qixing, Kalogerakis, Evangelos, Savarese, Silvio, Hanrahan, Pat, Funkhouser, Thomas, Su, Hao, Guibas, Leonidas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Yi
Shao, Lin
Savva, Manolis
Huang, Haibin
Zhou, Yang
Wang, Qirui
Graham, Benjamin
Engelcke, Martin
Klokov, Roman
Lempitsky, Victor
Gan, Yuan
Wang, Pengyu
Liu, Kun
Yu, Fenggen
Panpan Shui
Hu, Bingyang
Zhang, Yan
Li, Yangyan
Bu, Rui
Sun, Mingchao
Wu, Wei
Jeong, Minki
Choi, Jaehoon
Kim, Changick
Angom Geetchandra
Murthy, Narasimha
Bhargava Ramu
Bharadwaj Manda
Ramanathan, M
Kumar, Gautam
Preetham, P
Srivastava, Siddharth
Bhugra, Swati
Lall, Brejesh
Haene, Christian
Tulsiani, Shubham
Malik, Jitendra
Lafer, Jared
Jones, Ramsey
Li, Siyuan
Lu, Jie
Shi, Jin
Yu, Jingyi
Huang, Qixing
Kalogerakis, Evangelos
Savarese, Silvio
Hanrahan, Pat
Funkhouser, Thomas
Su, Hao
Guibas, Leonidas
description We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076308785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076308785</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763087853</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOxKRpsq-Kgriw7kuIr9XSJjWf-yvqAVwNzMwMZYzzDVEFYwuUh9BTSlkpmRA8Q8eT9h2Q2ugBMN_i-q4nwBcwzobok4kPZ7G2N1xDN4KN-iNa78bveoaIK-dBiBWat3oIkP-4ROv97lodyOTdM0GITe-St-_UMCpLTpVUgv93vQD2HjtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076308785</pqid></control><display><type>article</type><title>Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55</title><source>Free E- Journals</source><creator>Li, Yi ; Shao, Lin ; Savva, Manolis ; Huang, Haibin ; Zhou, Yang ; Wang, Qirui ; Graham, Benjamin ; Engelcke, Martin ; Klokov, Roman ; Lempitsky, Victor ; Gan, Yuan ; Wang, Pengyu ; Liu, Kun ; Yu, Fenggen ; Panpan Shui ; Hu, Bingyang ; Zhang, Yan ; Li, Yangyan ; Bu, Rui ; Sun, Mingchao ; Wu, Wei ; Jeong, Minki ; Choi, Jaehoon ; Kim, Changick ; Angom Geetchandra ; Murthy, Narasimha ; Bhargava Ramu ; Bharadwaj Manda ; Ramanathan, M ; Kumar, Gautam ; Preetham, P ; Srivastava, Siddharth ; Bhugra, Swati ; Lall, Brejesh ; Haene, Christian ; Tulsiani, Shubham ; Malik, Jitendra ; Lafer, Jared ; Jones, Ramsey ; Li, Siyuan ; Lu, Jie ; Shi, Jin ; Yu, Jingyi ; Huang, Qixing ; Kalogerakis, Evangelos ; Savarese, Silvio ; Hanrahan, Pat ; Funkhouser, Thomas ; Su, Hao ; Guibas, Leonidas</creator><creatorcontrib>Li, Yi ; Shao, Lin ; Savva, Manolis ; Huang, Haibin ; Zhou, Yang ; Wang, Qirui ; Graham, Benjamin ; Engelcke, Martin ; Klokov, Roman ; Lempitsky, Victor ; Gan, Yuan ; Wang, Pengyu ; Liu, Kun ; Yu, Fenggen ; Panpan Shui ; Hu, Bingyang ; Zhang, Yan ; Li, Yangyan ; Bu, Rui ; Sun, Mingchao ; Wu, Wei ; Jeong, Minki ; Choi, Jaehoon ; Kim, Changick ; Angom Geetchandra ; Murthy, Narasimha ; Bhargava Ramu ; Bharadwaj Manda ; Ramanathan, M ; Kumar, Gautam ; Preetham, P ; Srivastava, Siddharth ; Bhugra, Swati ; Lall, Brejesh ; Haene, Christian ; Tulsiani, Shubham ; Malik, Jitendra ; Lafer, Jared ; Jones, Ramsey ; Li, Siyuan ; Lu, Jie ; Shi, Jin ; Yu, Jingyi ; Huang, Qixing ; Kalogerakis, Evangelos ; Savarese, Silvio ; Hanrahan, Pat ; Funkhouser, Thomas ; Su, Hao ; Guibas, Leonidas</creatorcontrib><description>We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Benchmarks ; Image reconstruction ; Image segmentation ; Machine learning</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Savva, Manolis</creatorcontrib><creatorcontrib>Huang, Haibin</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Qirui</creatorcontrib><creatorcontrib>Graham, Benjamin</creatorcontrib><creatorcontrib>Engelcke, Martin</creatorcontrib><creatorcontrib>Klokov, Roman</creatorcontrib><creatorcontrib>Lempitsky, Victor</creatorcontrib><creatorcontrib>Gan, Yuan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Yu, Fenggen</creatorcontrib><creatorcontrib>Panpan Shui</creatorcontrib><creatorcontrib>Hu, Bingyang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Li, Yangyan</creatorcontrib><creatorcontrib>Bu, Rui</creatorcontrib><creatorcontrib>Sun, Mingchao</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Jeong, Minki</creatorcontrib><creatorcontrib>Choi, Jaehoon</creatorcontrib><creatorcontrib>Kim, Changick</creatorcontrib><creatorcontrib>Angom Geetchandra</creatorcontrib><creatorcontrib>Murthy, Narasimha</creatorcontrib><creatorcontrib>Bhargava Ramu</creatorcontrib><creatorcontrib>Bharadwaj Manda</creatorcontrib><creatorcontrib>Ramanathan, M</creatorcontrib><creatorcontrib>Kumar, Gautam</creatorcontrib><creatorcontrib>Preetham, P</creatorcontrib><creatorcontrib>Srivastava, Siddharth</creatorcontrib><creatorcontrib>Bhugra, Swati</creatorcontrib><creatorcontrib>Lall, Brejesh</creatorcontrib><creatorcontrib>Haene, Christian</creatorcontrib><creatorcontrib>Tulsiani, Shubham</creatorcontrib><creatorcontrib>Malik, Jitendra</creatorcontrib><creatorcontrib>Lafer, Jared</creatorcontrib><creatorcontrib>Jones, Ramsey</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Huang, Qixing</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Hanrahan, Pat</creatorcontrib><creatorcontrib>Funkhouser, Thomas</creatorcontrib><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Guibas, Leonidas</creatorcontrib><title>Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55</title><title>arXiv.org</title><description>We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.</description><subject>Annotations</subject><subject>Benchmarks</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOxKRpsq-Kgriw7kuIr9XSJjWf-yvqAVwNzMwMZYzzDVEFYwuUh9BTSlkpmRA8Q8eT9h2Q2ugBMN_i-q4nwBcwzobok4kPZ7G2N1xDN4KN-iNa78bveoaIK-dBiBWat3oIkP-4ROv97lodyOTdM0GITe-St-_UMCpLTpVUgv93vQD2HjtU</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Li, Yi</creator><creator>Shao, Lin</creator><creator>Savva, Manolis</creator><creator>Huang, Haibin</creator><creator>Zhou, Yang</creator><creator>Wang, Qirui</creator><creator>Graham, Benjamin</creator><creator>Engelcke, Martin</creator><creator>Klokov, Roman</creator><creator>Lempitsky, Victor</creator><creator>Gan, Yuan</creator><creator>Wang, Pengyu</creator><creator>Liu, Kun</creator><creator>Yu, Fenggen</creator><creator>Panpan Shui</creator><creator>Hu, Bingyang</creator><creator>Zhang, Yan</creator><creator>Li, Yangyan</creator><creator>Bu, Rui</creator><creator>Sun, Mingchao</creator><creator>Wu, Wei</creator><creator>Jeong, Minki</creator><creator>Choi, Jaehoon</creator><creator>Kim, Changick</creator><creator>Angom Geetchandra</creator><creator>Murthy, Narasimha</creator><creator>Bhargava Ramu</creator><creator>Bharadwaj Manda</creator><creator>Ramanathan, M</creator><creator>Kumar, Gautam</creator><creator>Preetham, P</creator><creator>Srivastava, Siddharth</creator><creator>Bhugra, Swati</creator><creator>Lall, Brejesh</creator><creator>Haene, Christian</creator><creator>Tulsiani, Shubham</creator><creator>Malik, Jitendra</creator><creator>Lafer, Jared</creator><creator>Jones, Ramsey</creator><creator>Li, Siyuan</creator><creator>Lu, Jie</creator><creator>Shi, Jin</creator><creator>Yu, Jingyi</creator><creator>Huang, Qixing</creator><creator>Kalogerakis, Evangelos</creator><creator>Savarese, Silvio</creator><creator>Hanrahan, Pat</creator><creator>Funkhouser, Thomas</creator><creator>Su, Hao</creator><creator>Guibas, Leonidas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171027</creationdate><title>Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55</title><author>Li, Yi ; Shao, Lin ; Savva, Manolis ; Huang, Haibin ; Zhou, Yang ; Wang, Qirui ; Graham, Benjamin ; Engelcke, Martin ; Klokov, Roman ; Lempitsky, Victor ; Gan, Yuan ; Wang, Pengyu ; Liu, Kun ; Yu, Fenggen ; Panpan Shui ; Hu, Bingyang ; Zhang, Yan ; Li, Yangyan ; Bu, Rui ; Sun, Mingchao ; Wu, Wei ; Jeong, Minki ; Choi, Jaehoon ; Kim, Changick ; Angom Geetchandra ; Murthy, Narasimha ; Bhargava Ramu ; Bharadwaj Manda ; Ramanathan, M ; Kumar, Gautam ; Preetham, P ; Srivastava, Siddharth ; Bhugra, Swati ; Lall, Brejesh ; Haene, Christian ; Tulsiani, Shubham ; Malik, Jitendra ; Lafer, Jared ; Jones, Ramsey ; Li, Siyuan ; Lu, Jie ; Shi, Jin ; Yu, Jingyi ; Huang, Qixing ; Kalogerakis, Evangelos ; Savarese, Silvio ; Hanrahan, Pat ; Funkhouser, Thomas ; Su, Hao ; Guibas, Leonidas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763087853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annotations</topic><topic>Benchmarks</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Savva, Manolis</creatorcontrib><creatorcontrib>Huang, Haibin</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Wang, Qirui</creatorcontrib><creatorcontrib>Graham, Benjamin</creatorcontrib><creatorcontrib>Engelcke, Martin</creatorcontrib><creatorcontrib>Klokov, Roman</creatorcontrib><creatorcontrib>Lempitsky, Victor</creatorcontrib><creatorcontrib>Gan, Yuan</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Yu, Fenggen</creatorcontrib><creatorcontrib>Panpan Shui</creatorcontrib><creatorcontrib>Hu, Bingyang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Li, Yangyan</creatorcontrib><creatorcontrib>Bu, Rui</creatorcontrib><creatorcontrib>Sun, Mingchao</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Jeong, Minki</creatorcontrib><creatorcontrib>Choi, Jaehoon</creatorcontrib><creatorcontrib>Kim, Changick</creatorcontrib><creatorcontrib>Angom Geetchandra</creatorcontrib><creatorcontrib>Murthy, Narasimha</creatorcontrib><creatorcontrib>Bhargava Ramu</creatorcontrib><creatorcontrib>Bharadwaj Manda</creatorcontrib><creatorcontrib>Ramanathan, M</creatorcontrib><creatorcontrib>Kumar, Gautam</creatorcontrib><creatorcontrib>Preetham, P</creatorcontrib><creatorcontrib>Srivastava, Siddharth</creatorcontrib><creatorcontrib>Bhugra, Swati</creatorcontrib><creatorcontrib>Lall, Brejesh</creatorcontrib><creatorcontrib>Haene, Christian</creatorcontrib><creatorcontrib>Tulsiani, Shubham</creatorcontrib><creatorcontrib>Malik, Jitendra</creatorcontrib><creatorcontrib>Lafer, Jared</creatorcontrib><creatorcontrib>Jones, Ramsey</creatorcontrib><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Yu, Jingyi</creatorcontrib><creatorcontrib>Huang, Qixing</creatorcontrib><creatorcontrib>Kalogerakis, Evangelos</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Hanrahan, Pat</creatorcontrib><creatorcontrib>Funkhouser, Thomas</creatorcontrib><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Guibas, Leonidas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi</au><au>Shao, Lin</au><au>Savva, Manolis</au><au>Huang, Haibin</au><au>Zhou, Yang</au><au>Wang, Qirui</au><au>Graham, Benjamin</au><au>Engelcke, Martin</au><au>Klokov, Roman</au><au>Lempitsky, Victor</au><au>Gan, Yuan</au><au>Wang, Pengyu</au><au>Liu, Kun</au><au>Yu, Fenggen</au><au>Panpan Shui</au><au>Hu, Bingyang</au><au>Zhang, Yan</au><au>Li, Yangyan</au><au>Bu, Rui</au><au>Sun, Mingchao</au><au>Wu, Wei</au><au>Jeong, Minki</au><au>Choi, Jaehoon</au><au>Kim, Changick</au><au>Angom Geetchandra</au><au>Murthy, Narasimha</au><au>Bhargava Ramu</au><au>Bharadwaj Manda</au><au>Ramanathan, M</au><au>Kumar, Gautam</au><au>Preetham, P</au><au>Srivastava, Siddharth</au><au>Bhugra, Swati</au><au>Lall, Brejesh</au><au>Haene, Christian</au><au>Tulsiani, Shubham</au><au>Malik, Jitendra</au><au>Lafer, Jared</au><au>Jones, Ramsey</au><au>Li, Siyuan</au><au>Lu, Jie</au><au>Shi, Jin</au><au>Yu, Jingyi</au><au>Huang, Qixing</au><au>Kalogerakis, Evangelos</au><au>Savarese, Silvio</au><au>Hanrahan, Pat</au><au>Funkhouser, Thomas</au><au>Su, Hao</au><au>Guibas, Leonidas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55</atitle><jtitle>arXiv.org</jtitle><date>2017-10-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076308785
source Free E- Journals
subjects Annotations
Benchmarks
Image reconstruction
Image segmentation
Machine learning
title Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large-Scale%203D%20Shape%20Reconstruction%20and%20Segmentation%20from%20ShapeNet%20Core55&rft.jtitle=arXiv.org&rft.au=Li,%20Yi&rft.date=2017-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076308785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076308785&rft_id=info:pmid/&rfr_iscdi=true