Weak Universality in the Disordered Two-Dimensional Antiferromagnetic Potts Model on a Triangular Lattice

The critical behavior of the disordered two-dimensional antiferromagnetic Potts model with the number of spin states q = 3 on a triangular lattice with disorder in the form of nonmagnetic impurities is studied by the Monte Carlo method. The critical exponents for the susceptibility γ, magnetization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2018-05, Vol.107 (10), p.624-628
Hauptverfasser: Babaev, A. B., Murtazaev, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The critical behavior of the disordered two-dimensional antiferromagnetic Potts model with the number of spin states q = 3 on a triangular lattice with disorder in the form of nonmagnetic impurities is studied by the Monte Carlo method. The critical exponents for the susceptibility γ, magnetization β, specific heat α, and correlation radius ν are calculated in the framework of the finite-size scaling theory at spin concentrations p = 0.90, 0.80, 0.70, and 0.65. It is found that the critical exponents increase with the degree of disorder, whereas the ratios and do not change, thus holding the scaling equality 2 ß ? + ? ? = d . Such behavior of the critical exponents is related to the weak universality of the critical behavior characteristic of disordered systems. All results are obtained using independent Monte Carlo algorithms, such as the Metropolis and Wolff algorithms.
ISSN:0021-3640
1090-6487
DOI:10.1134/S0021364018100053