A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error

The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2018-09, Vol.55 (3), p.1-43, Article 32
Hauptverfasser: Bueno, M. I., Dopico, F. M., Furtado, S., Medina, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 3
container_start_page 1
container_title Calcolo
container_volume 55
creator Bueno, M. I.
Dopico, F. M.
Furtado, S.
Medina, L.
description The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325–331, 2003 ) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78–87, 2004 ). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space DL ( P ) of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.
doi_str_mv 10.1007/s10092-018-0273-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076302737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076302737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d378d62517782f3ce1444051ab2f95fda9fd0892e2fad239ce30efd4d12e4b5e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-9utYil9Q8KLnkN1MatrdZE221oo_3tQKnrzMMMz7PsO8CF1Sck0JKW9iqjXLCK0ywkqeiSM0oZQVWS64OEYTQkjaFEycorMYV2nMRSUm6GuGm8636yzu-h7GYFvcWQcq2E81Wu-wN9hrjTUsAwDuVZJ84MF3O-d7q7qIt3Z8xX4Yba86DHYJ7l11G8Ctd9r-INymbyBg5TRuVLveqqAxhODDOToxCQEXv32KXu5un-cP2eLp_nE-W2Qtz-sx07ysdMFyWpYVM7wFKoQgOVUNM3VutKqNJlXNgBmlGa9b4ASMFpoyEE0OfIquDtwh-LcNxFGu_Ca4dFIyUhZ8n1iZVPSgaoOPMYCRQ0hPhZ2kRO5DloeQZQpZ7i1SJA87eGLSuiWEP_L_pm-dFoH5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076302737</pqid></control><display><type>article</type><title>A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error</title><source>Springer Nature - Complete Springer Journals</source><creator>Bueno, M. I. ; Dopico, F. M. ; Furtado, S. ; Medina, L.</creator><creatorcontrib>Bueno, M. I. ; Dopico, F. M. ; Furtado, S. ; Medina, L.</creatorcontrib><description>The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325–331, 2003 ) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78–87, 2004 ). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space DL ( P ) of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-018-0273-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Construction ; Eigenvalues ; Linear algebra ; Linearization ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical Analysis ; Polynomials ; Theory of Computation</subject><ispartof>Calcolo, 2018-09, Vol.55 (3), p.1-43, Article 32</ispartof><rights>Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d378d62517782f3ce1444051ab2f95fda9fd0892e2fad239ce30efd4d12e4b5e3</citedby><cites>FETCH-LOGICAL-c359t-d378d62517782f3ce1444051ab2f95fda9fd0892e2fad239ce30efd4d12e4b5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-018-0273-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-018-0273-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bueno, M. I.</creatorcontrib><creatorcontrib>Dopico, F. M.</creatorcontrib><creatorcontrib>Furtado, S.</creatorcontrib><creatorcontrib>Medina, L.</creatorcontrib><title>A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325–331, 2003 ) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78–87, 2004 ). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space DL ( P ) of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.</description><subject>Construction</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA82q-9utYil9Q8KLnkN1MatrdZE221oo_3tQKnrzMMMz7PsO8CF1Sck0JKW9iqjXLCK0ywkqeiSM0oZQVWS64OEYTQkjaFEycorMYV2nMRSUm6GuGm8636yzu-h7GYFvcWQcq2E81Wu-wN9hrjTUsAwDuVZJ84MF3O-d7q7qIt3Z8xX4Yba86DHYJ7l11G8Ctd9r-INymbyBg5TRuVLveqqAxhODDOToxCQEXv32KXu5un-cP2eLp_nE-W2Qtz-sx07ysdMFyWpYVM7wFKoQgOVUNM3VutKqNJlXNgBmlGa9b4ASMFpoyEE0OfIquDtwh-LcNxFGu_Ca4dFIyUhZ8n1iZVPSgaoOPMYCRQ0hPhZ2kRO5DloeQZQpZ7i1SJA87eGLSuiWEP_L_pm-dFoH5</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Bueno, M. I.</creator><creator>Dopico, F. M.</creator><creator>Furtado, S.</creator><creator>Medina, L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180901</creationdate><title>A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error</title><author>Bueno, M. I. ; Dopico, F. M. ; Furtado, S. ; Medina, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d378d62517782f3ce1444051ab2f95fda9fd0892e2fad239ce30efd4d12e4b5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Construction</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno, M. I.</creatorcontrib><creatorcontrib>Dopico, F. M.</creatorcontrib><creatorcontrib>Furtado, S.</creatorcontrib><creatorcontrib>Medina, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno, M. I.</au><au>Dopico, F. M.</au><au>Furtado, S.</au><au>Medina, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>3</issue><spage>1</spage><epage>43</epage><pages>1-43</pages><artnum>32</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325–331, 2003 ) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78–87, 2004 ). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space DL ( P ) of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-018-0273-4</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2018-09, Vol.55 (3), p.1-43, Article 32
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2076302737
source Springer Nature - Complete Springer Journals
subjects Construction
Eigenvalues
Linear algebra
Linearization
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix methods
Numerical Analysis
Polynomials
Theory of Computation
title A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20block-symmetric%20linearization%20of%20odd%20degree%20matrix%20polynomials%20with%20optimal%20eigenvalue%20condition%20number%20and%20backward%20error&rft.jtitle=Calcolo&rft.au=Bueno,%20M.%20I.&rft.date=2018-09-01&rft.volume=55&rft.issue=3&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.artnum=32&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-018-0273-4&rft_dat=%3Cproquest_cross%3E2076302737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076302737&rft_id=info:pmid/&rfr_iscdi=true