Convex Functions and Geodesic Connectedness of Space-times
This paper explores the relation between convex functions and the geometry of space-times and semi-Riemannian manifolds (an investigation initiated by Gibbons-Ishibashi). Specifically, we study geodesic connectedness. We give geometric-topological proofs of geodesic connectedness for classes of spac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alexander, Stephanie B Karr, William A |
description | This paper explores the relation between convex functions and the geometry of space-times and semi-Riemannian manifolds (an investigation initiated by Gibbons-Ishibashi). Specifically, we study geodesic connectedness. We give geometric-topological proofs of geodesic connectedness for classes of space-times to which known methods do not apply. For instance: A null-disprisoning space-time is geodesically connected if it supports a proper, nonnegative strictly convex function whose critical set is a point. Timelike strictly convex hypersurfaces of Minkowski space are geodesically connected. We also give a criterion for the existence of a convex function on a semi-Riemannian manifold. We compare our work with previously known results. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076229061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076229061</sourcerecordid><originalsourceid>FETCH-proquest_journals_20762290613</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKuA-mkP-q2WN3rvpRkCi06qZ1EPL5deABXb_G9lUjAmEwdcoCNSJlHrTWUFRSFScSp9vTGj2wi2TB4YtmRkxf0DnmwclFCG9ARMkvfy9vUWVRheCLvxLrvHozpr1uxb873-qqm2b8icmhHH2daqAVdlQBHXWbmv-sLsBU2ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076229061</pqid></control><display><type>article</type><title>Convex Functions and Geodesic Connectedness of Space-times</title><source>Free E- Journals</source><creator>Alexander, Stephanie B ; Karr, William A</creator><creatorcontrib>Alexander, Stephanie B ; Karr, William A</creatorcontrib><description>This paper explores the relation between convex functions and the geometry of space-times and semi-Riemannian manifolds (an investigation initiated by Gibbons-Ishibashi). Specifically, we study geodesic connectedness. We give geometric-topological proofs of geodesic connectedness for classes of space-times to which known methods do not apply. For instance: A null-disprisoning space-time is geodesically connected if it supports a proper, nonnegative strictly convex function whose critical set is a point. Timelike strictly convex hypersurfaces of Minkowski space are geodesically connected. We also give a criterion for the existence of a convex function on a semi-Riemannian manifold. We compare our work with previously known results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Convex analysis ; Hyperspaces ; Manifolds (mathematics) ; Minkowski space ; Riemann manifold ; Set theory ; Spacetime</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Alexander, Stephanie B</creatorcontrib><creatorcontrib>Karr, William A</creatorcontrib><title>Convex Functions and Geodesic Connectedness of Space-times</title><title>arXiv.org</title><description>This paper explores the relation between convex functions and the geometry of space-times and semi-Riemannian manifolds (an investigation initiated by Gibbons-Ishibashi). Specifically, we study geodesic connectedness. We give geometric-topological proofs of geodesic connectedness for classes of space-times to which known methods do not apply. For instance: A null-disprisoning space-time is geodesically connected if it supports a proper, nonnegative strictly convex function whose critical set is a point. Timelike strictly convex hypersurfaces of Minkowski space are geodesically connected. We also give a criterion for the existence of a convex function on a semi-Riemannian manifold. We compare our work with previously known results.</description><subject>Brownian motion</subject><subject>Convex analysis</subject><subject>Hyperspaces</subject><subject>Manifolds (mathematics)</subject><subject>Minkowski space</subject><subject>Riemann manifold</subject><subject>Set theory</subject><subject>Spacetime</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKuA-mkP-q2WN3rvpRkCi06qZ1EPL5deABXb_G9lUjAmEwdcoCNSJlHrTWUFRSFScSp9vTGj2wi2TB4YtmRkxf0DnmwclFCG9ARMkvfy9vUWVRheCLvxLrvHozpr1uxb873-qqm2b8icmhHH2daqAVdlQBHXWbmv-sLsBU2ow</recordid><startdate>20170725</startdate><enddate>20170725</enddate><creator>Alexander, Stephanie B</creator><creator>Karr, William A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170725</creationdate><title>Convex Functions and Geodesic Connectedness of Space-times</title><author>Alexander, Stephanie B ; Karr, William A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20762290613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brownian motion</topic><topic>Convex analysis</topic><topic>Hyperspaces</topic><topic>Manifolds (mathematics)</topic><topic>Minkowski space</topic><topic>Riemann manifold</topic><topic>Set theory</topic><topic>Spacetime</topic><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Stephanie B</creatorcontrib><creatorcontrib>Karr, William A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Stephanie B</au><au>Karr, William A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convex Functions and Geodesic Connectedness of Space-times</atitle><jtitle>arXiv.org</jtitle><date>2017-07-25</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This paper explores the relation between convex functions and the geometry of space-times and semi-Riemannian manifolds (an investigation initiated by Gibbons-Ishibashi). Specifically, we study geodesic connectedness. We give geometric-topological proofs of geodesic connectedness for classes of space-times to which known methods do not apply. For instance: A null-disprisoning space-time is geodesically connected if it supports a proper, nonnegative strictly convex function whose critical set is a point. Timelike strictly convex hypersurfaces of Minkowski space are geodesically connected. We also give a criterion for the existence of a convex function on a semi-Riemannian manifold. We compare our work with previously known results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076229061 |
source | Free E- Journals |
subjects | Brownian motion Convex analysis Hyperspaces Manifolds (mathematics) Minkowski space Riemann manifold Set theory Spacetime |
title | Convex Functions and Geodesic Connectedness of Space-times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convex%20Functions%20and%20Geodesic%20Connectedness%20of%20Space-times&rft.jtitle=arXiv.org&rft.au=Alexander,%20Stephanie%20B&rft.date=2017-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076229061%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076229061&rft_id=info:pmid/&rfr_iscdi=true |