Structure theorems in tame expansions of o-minimal structures by a dense set
We study sets and groups definable in tame expansions of o-minimal structures. Let \(\mathcal {\widetilde M}= \langle \mathcal M, P\rangle\) be an expansion of an o-minimal \(\mathcal L\)-structure \(\cal M\) by a dense set \(P\), such that three tameness conditions hold. We prove a structure theore...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Eleftheriou, Pantelis E Günaydin, Ayhan Hieronymi, Philipp |
description | We study sets and groups definable in tame expansions of o-minimal structures. Let \(\mathcal {\widetilde M}= \langle \mathcal M, P\rangle\) be an expansion of an o-minimal \(\mathcal L\)-structure \(\cal M\) by a dense set \(P\), such that three tameness conditions hold. We prove a structure theorem for definable sets and functions in analogy with the influential cell decomposition theorem known for o-minimal structures. The structure theorem advances the state-of-the-art in all known examples of \(\mathcal {\widetilde M}\), as it achieves a decomposition of definable sets into \emph{unions} of `cones', instead of only boolean combinations of them. We also develop the right dimension theory in the tame setting. Applications include: (i) the dimension of a definable set coincides with a suitable pregeometric dimension, and it is invariant under definable bijections, (ii) every definable map is given by an \(\cal L\)-definable map off a subset of its domain of smaller dimension, and (iii) around generic elements of a definable group, the group operation is given by an \(\cal L\)-definable map. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076210818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076210818</sourcerecordid><originalsourceid>FETCH-proquest_journals_20762108183</originalsourceid><addsrcrecordid>eNqNiz0LwjAUAIMgWLT_4YFzIX2xH7soDm66l6ivmNIkNS8B_fc66O50w93NRIZKlUW7QVyInHmQUmLdYFWpTBxPMaRrTIEg3skHsgzGQdSWgJ6Tdmy8Y_A9-MIaZ6wegX8Lw-UFGm7kmIAprsS81yNT_uVSrPe78_ZQTME_EnHsBp-C-6gOZVNjKduyVf9Vb4yjPcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076210818</pqid></control><display><type>article</type><title>Structure theorems in tame expansions of o-minimal structures by a dense set</title><source>Free E- Journals</source><creator>Eleftheriou, Pantelis E ; Günaydin, Ayhan ; Hieronymi, Philipp</creator><creatorcontrib>Eleftheriou, Pantelis E ; Günaydin, Ayhan ; Hieronymi, Philipp</creatorcontrib><description>We study sets and groups definable in tame expansions of o-minimal structures. Let \(\mathcal {\widetilde M}= \langle \mathcal M, P\rangle\) be an expansion of an o-minimal \(\mathcal L\)-structure \(\cal M\) by a dense set \(P\), such that three tameness conditions hold. We prove a structure theorem for definable sets and functions in analogy with the influential cell decomposition theorem known for o-minimal structures. The structure theorem advances the state-of-the-art in all known examples of \(\mathcal {\widetilde M}\), as it achieves a decomposition of definable sets into \emph{unions} of `cones', instead of only boolean combinations of them. We also develop the right dimension theory in the tame setting. Applications include: (i) the dimension of a definable set coincides with a suitable pregeometric dimension, and it is invariant under definable bijections, (ii) every definable map is given by an \(\cal L\)-definable map off a subset of its domain of smaller dimension, and (iii) around generic elements of a definable group, the group operation is given by an \(\cal L\)-definable map.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boolean algebra ; Cones ; Decomposition ; Theorems</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Eleftheriou, Pantelis E</creatorcontrib><creatorcontrib>Günaydin, Ayhan</creatorcontrib><creatorcontrib>Hieronymi, Philipp</creatorcontrib><title>Structure theorems in tame expansions of o-minimal structures by a dense set</title><title>arXiv.org</title><description>We study sets and groups definable in tame expansions of o-minimal structures. Let \(\mathcal {\widetilde M}= \langle \mathcal M, P\rangle\) be an expansion of an o-minimal \(\mathcal L\)-structure \(\cal M\) by a dense set \(P\), such that three tameness conditions hold. We prove a structure theorem for definable sets and functions in analogy with the influential cell decomposition theorem known for o-minimal structures. The structure theorem advances the state-of-the-art in all known examples of \(\mathcal {\widetilde M}\), as it achieves a decomposition of definable sets into \emph{unions} of `cones', instead of only boolean combinations of them. We also develop the right dimension theory in the tame setting. Applications include: (i) the dimension of a definable set coincides with a suitable pregeometric dimension, and it is invariant under definable bijections, (ii) every definable map is given by an \(\cal L\)-definable map off a subset of its domain of smaller dimension, and (iii) around generic elements of a definable group, the group operation is given by an \(\cal L\)-definable map.</description><subject>Boolean algebra</subject><subject>Cones</subject><subject>Decomposition</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiz0LwjAUAIMgWLT_4YFzIX2xH7soDm66l6ivmNIkNS8B_fc66O50w93NRIZKlUW7QVyInHmQUmLdYFWpTBxPMaRrTIEg3skHsgzGQdSWgJ6Tdmy8Y_A9-MIaZ6wegX8Lw-UFGm7kmIAprsS81yNT_uVSrPe78_ZQTME_EnHsBp-C-6gOZVNjKduyVf9Vb4yjPcg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Eleftheriou, Pantelis E</creator><creator>Günaydin, Ayhan</creator><creator>Hieronymi, Philipp</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Structure theorems in tame expansions of o-minimal structures by a dense set</title><author>Eleftheriou, Pantelis E ; Günaydin, Ayhan ; Hieronymi, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20762108183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boolean algebra</topic><topic>Cones</topic><topic>Decomposition</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Eleftheriou, Pantelis E</creatorcontrib><creatorcontrib>Günaydin, Ayhan</creatorcontrib><creatorcontrib>Hieronymi, Philipp</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleftheriou, Pantelis E</au><au>Günaydin, Ayhan</au><au>Hieronymi, Philipp</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structure theorems in tame expansions of o-minimal structures by a dense set</atitle><jtitle>arXiv.org</jtitle><date>2019-10-01</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study sets and groups definable in tame expansions of o-minimal structures. Let \(\mathcal {\widetilde M}= \langle \mathcal M, P\rangle\) be an expansion of an o-minimal \(\mathcal L\)-structure \(\cal M\) by a dense set \(P\), such that three tameness conditions hold. We prove a structure theorem for definable sets and functions in analogy with the influential cell decomposition theorem known for o-minimal structures. The structure theorem advances the state-of-the-art in all known examples of \(\mathcal {\widetilde M}\), as it achieves a decomposition of definable sets into \emph{unions} of `cones', instead of only boolean combinations of them. We also develop the right dimension theory in the tame setting. Applications include: (i) the dimension of a definable set coincides with a suitable pregeometric dimension, and it is invariant under definable bijections, (ii) every definable map is given by an \(\cal L\)-definable map off a subset of its domain of smaller dimension, and (iii) around generic elements of a definable group, the group operation is given by an \(\cal L\)-definable map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076210818 |
source | Free E- Journals |
subjects | Boolean algebra Cones Decomposition Theorems |
title | Structure theorems in tame expansions of o-minimal structures by a dense set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structure%20theorems%20in%20tame%20expansions%20of%20o-minimal%20structures%20by%20a%20dense%20set&rft.jtitle=arXiv.org&rft.au=Eleftheriou,%20Pantelis%20E&rft.date=2019-10-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076210818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076210818&rft_id=info:pmid/&rfr_iscdi=true |