Simple and general correlation for heat transfer during flow condensation inside plain pipes

•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-07, Vol.122, p.290-305
Hauptverfasser: Dorao, Carlos A., Fernandino, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue
container_start_page 290
container_title International journal of heat and mass transfer
container_volume 122
creator Dorao, Carlos A.
Fernandino, Maria
description •A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.01.097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076201259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017308232</els_id><sourcerecordid>2076201259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4AXL61J-n1TFj8RPKg3IUyTyZrSTWvSVfz3ZqmevHgahnl4X-Yh5IyzlDNennep7d4Qpg2EMHlwwaBPBeN1ynjKmmqPLHhdNYngdbNPFozxKmkyzg7JUQjdbmV5uSCvT3Yz9kjBabpGhx56qgbvsYfJDo6awdNdDf3toHrrrVtT0w-fkXQaXZhR64LVSMcerKOjHTEckwMDfcCTn7kkL9dXz6vb5OHx5m51-ZCoXNRTghpbgIxV0JpWsSpH0QotDAPFK2O4yQyUNeRccFBZCaoqoS54kRVtLjJssyU5nXNHP7xvMUyyG7bexUopWFVGK6JoInUxU8oPIXg0cvR2A_5LciZ3TmUn_zqVO6eScRmdxoj7OQLjNx82XoOy6BRq61FNUg_2_2HfXR6PIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076201259</pqid></control><display><type>article</type><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><source>Elsevier ScienceDirect Journals</source><creator>Dorao, Carlos A. ; Fernandino, Maria</creator><creatorcontrib>Dorao, Carlos A. ; Fernandino, Maria</creatorcontrib><description>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.01.097</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Condensation ; Flow condensation ; Fluid flow ; Fluxes ; Heat ; Heat conductivity ; Heat detection ; Heat engines ; Heat exchangers ; Heat transfer coefficient ; Heat transfer coefficients ; Local flow ; Pipes ; Reynolds number ; Two-phase flow</subject><ispartof>International journal of heat and mass transfer, 2018-07, Vol.122, p.290-305</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</citedby><cites>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931017308232$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dorao, Carlos A.</creatorcontrib><creatorcontrib>Fernandino, Maria</creatorcontrib><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><title>International journal of heat and mass transfer</title><description>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</description><subject>Computational fluid dynamics</subject><subject>Condensation</subject><subject>Flow condensation</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Heat</subject><subject>Heat conductivity</subject><subject>Heat detection</subject><subject>Heat engines</subject><subject>Heat exchangers</subject><subject>Heat transfer coefficient</subject><subject>Heat transfer coefficients</subject><subject>Local flow</subject><subject>Pipes</subject><subject>Reynolds number</subject><subject>Two-phase flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4AXL61J-n1TFj8RPKg3IUyTyZrSTWvSVfz3ZqmevHgahnl4X-Yh5IyzlDNennep7d4Qpg2EMHlwwaBPBeN1ynjKmmqPLHhdNYngdbNPFozxKmkyzg7JUQjdbmV5uSCvT3Yz9kjBabpGhx56qgbvsYfJDo6awdNdDf3toHrrrVtT0w-fkXQaXZhR64LVSMcerKOjHTEckwMDfcCTn7kkL9dXz6vb5OHx5m51-ZCoXNRTghpbgIxV0JpWsSpH0QotDAPFK2O4yQyUNeRccFBZCaoqoS54kRVtLjJssyU5nXNHP7xvMUyyG7bexUopWFVGK6JoInUxU8oPIXg0cvR2A_5LciZ3TmUn_zqVO6eScRmdxoj7OQLjNx82XoOy6BRq61FNUg_2_2HfXR6PIA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Dorao, Carlos A.</creator><creator>Fernandino, Maria</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201807</creationdate><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><author>Dorao, Carlos A. ; Fernandino, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Condensation</topic><topic>Flow condensation</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Heat</topic><topic>Heat conductivity</topic><topic>Heat detection</topic><topic>Heat engines</topic><topic>Heat exchangers</topic><topic>Heat transfer coefficient</topic><topic>Heat transfer coefficients</topic><topic>Local flow</topic><topic>Pipes</topic><topic>Reynolds number</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorao, Carlos A.</creatorcontrib><creatorcontrib>Fernandino, Maria</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorao, Carlos A.</au><au>Fernandino, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and general correlation for heat transfer during flow condensation inside plain pipes</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-07</date><risdate>2018</risdate><volume>122</volume><spage>290</spage><epage>305</epage><pages>290-305</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.01.097</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-07, Vol.122, p.290-305
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2076201259
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Condensation
Flow condensation
Fluid flow
Fluxes
Heat
Heat conductivity
Heat detection
Heat engines
Heat exchangers
Heat transfer coefficient
Heat transfer coefficients
Local flow
Pipes
Reynolds number
Two-phase flow
title Simple and general correlation for heat transfer during flow condensation inside plain pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20general%20correlation%20for%20heat%20transfer%20during%20flow%20condensation%20inside%20plain%20pipes&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Dorao,%20Carlos%20A.&rft.date=2018-07&rft.volume=122&rft.spage=290&rft.epage=305&rft.pages=290-305&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.01.097&rft_dat=%3Cproquest_cross%3E2076201259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076201259&rft_id=info:pmid/&rft_els_id=S0017931017308232&rfr_iscdi=true