Simple and general correlation for heat transfer during flow condensation inside plain pipes
•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model. This work proposes a new general and simple model to determin...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2018-07, Vol.122, p.290-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | |
container_start_page | 290 |
container_title | International journal of heat and mass transfer |
container_volume | 122 |
creator | Dorao, Carlos A. Fernandino, Maria |
description | •A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model.
This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2018.01.097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076201259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017308232</els_id><sourcerecordid>2076201259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h4AXL61J-n1TFj8RPKg3IUyTyZrSTWvSVfz3ZqmevHgahnl4X-Yh5IyzlDNennep7d4Qpg2EMHlwwaBPBeN1ynjKmmqPLHhdNYngdbNPFozxKmkyzg7JUQjdbmV5uSCvT3Yz9kjBabpGhx56qgbvsYfJDo6awdNdDf3toHrrrVtT0w-fkXQaXZhR64LVSMcerKOjHTEckwMDfcCTn7kkL9dXz6vb5OHx5m51-ZCoXNRTghpbgIxV0JpWsSpH0QotDAPFK2O4yQyUNeRccFBZCaoqoS54kRVtLjJssyU5nXNHP7xvMUyyG7bexUopWFVGK6JoInUxU8oPIXg0cvR2A_5LciZ3TmUn_zqVO6eScRmdxoj7OQLjNx82XoOy6BRq61FNUg_2_2HfXR6PIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076201259</pqid></control><display><type>article</type><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><source>Elsevier ScienceDirect Journals</source><creator>Dorao, Carlos A. ; Fernandino, Maria</creator><creatorcontrib>Dorao, Carlos A. ; Fernandino, Maria</creatorcontrib><description>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model.
This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.01.097</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Condensation ; Flow condensation ; Fluid flow ; Fluxes ; Heat ; Heat conductivity ; Heat detection ; Heat engines ; Heat exchangers ; Heat transfer coefficient ; Heat transfer coefficients ; Local flow ; Pipes ; Reynolds number ; Two-phase flow</subject><ispartof>International journal of heat and mass transfer, 2018-07, Vol.122, p.290-305</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</citedby><cites>FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931017308232$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dorao, Carlos A.</creatorcontrib><creatorcontrib>Fernandino, Maria</creatorcontrib><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><title>International journal of heat and mass transfer</title><description>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model.
This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</description><subject>Computational fluid dynamics</subject><subject>Condensation</subject><subject>Flow condensation</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Heat</subject><subject>Heat conductivity</subject><subject>Heat detection</subject><subject>Heat engines</subject><subject>Heat exchangers</subject><subject>Heat transfer coefficient</subject><subject>Heat transfer coefficients</subject><subject>Local flow</subject><subject>Pipes</subject><subject>Reynolds number</subject><subject>Two-phase flow</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h4AXL61J-n1TFj8RPKg3IUyTyZrSTWvSVfz3ZqmevHgahnl4X-Yh5IyzlDNennep7d4Qpg2EMHlwwaBPBeN1ynjKmmqPLHhdNYngdbNPFozxKmkyzg7JUQjdbmV5uSCvT3Yz9kjBabpGhx56qgbvsYfJDo6awdNdDf3toHrrrVtT0w-fkXQaXZhR64LVSMcerKOjHTEckwMDfcCTn7kkL9dXz6vb5OHx5m51-ZCoXNRTghpbgIxV0JpWsSpH0QotDAPFK2O4yQyUNeRccFBZCaoqoS54kRVtLjJssyU5nXNHP7xvMUyyG7bexUopWFVGK6JoInUxU8oPIXg0cvR2A_5LciZ3TmUn_zqVO6eScRmdxoj7OQLjNx82XoOy6BRq61FNUg_2_2HfXR6PIA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Dorao, Carlos A.</creator><creator>Fernandino, Maria</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201807</creationdate><title>Simple and general correlation for heat transfer during flow condensation inside plain pipes</title><author>Dorao, Carlos A. ; Fernandino, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-edebaa307abfbc074e2b2d2f0ac17ff1f3fa68a4121ac36ac76a851535b423eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Condensation</topic><topic>Flow condensation</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Heat</topic><topic>Heat conductivity</topic><topic>Heat detection</topic><topic>Heat engines</topic><topic>Heat exchangers</topic><topic>Heat transfer coefficient</topic><topic>Heat transfer coefficients</topic><topic>Local flow</topic><topic>Pipes</topic><topic>Reynolds number</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorao, Carlos A.</creatorcontrib><creatorcontrib>Fernandino, Maria</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorao, Carlos A.</au><au>Fernandino, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and general correlation for heat transfer during flow condensation inside plain pipes</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-07</date><risdate>2018</risdate><volume>122</volume><spage>290</spage><epage>305</epage><pages>290-305</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A general heat transfer coefficient model for flow condensation was developed.•HTC is correlated by the sum of the liquid and vapor superficial Reynolds number.•The condensation HTC model is equivalent to the single-phase flow HTC model.
This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.01.097</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2018-07, Vol.122, p.290-305 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2076201259 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics Condensation Flow condensation Fluid flow Fluxes Heat Heat conductivity Heat detection Heat engines Heat exchangers Heat transfer coefficient Heat transfer coefficients Local flow Pipes Reynolds number Two-phase flow |
title | Simple and general correlation for heat transfer during flow condensation inside plain pipes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20general%20correlation%20for%20heat%20transfer%20during%20flow%20condensation%20inside%20plain%20pipes&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Dorao,%20Carlos%20A.&rft.date=2018-07&rft.volume=122&rft.spage=290&rft.epage=305&rft.pages=290-305&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.01.097&rft_dat=%3Cproquest_cross%3E2076201259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076201259&rft_id=info:pmid/&rft_els_id=S0017931017308232&rfr_iscdi=true |