Numerical study of the Kitaev-Heisenberg chain
We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2018-05, Vol.536, p.461-463 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 463 |
---|---|
container_issue | |
container_start_page | 461 |
container_title | Physica. B, Condensed matter |
container_volume | 536 |
creator | Agrapidis, Cliò Efthimia van den Brink, Jeroen Nishimoto, Satoshi |
description | We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm. |
doi_str_mv | 10.1016/j.physb.2017.09.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076200154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452617306427</els_id><sourcerecordid>2076200154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-7a4f61af13b394ce7d96406266ba0fcc698625d765bcb88ee5bb9f7f594fbfed3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBCyRmBN8ie14YEAVUEQFC8yW7RxTR21S7KRS3x5DmTnLWf7vXD6ErgmuCCbitqt260OyFcVEVlhVmIsTNCONZCUljJ-iGVaUlDWn4hxdpNThXESSGapepy3E4MymSOPUHorBF-MaipcwGtiXSwgJegvxs3BrE_pLdObNJsHVX5-jj8eH98WyXL09PS_uV6VjjIylNLUXxHjCLFO1A9kqUWNBhbAGe-eEagTlrRTcOts0ANxa5aXnqvbWQ8vm6OY4dxeHrwnSqLthin1eqSmWgubreZ1T7JhycUgpgte7GLYmHjTB-keM7vSvGP0jRmOls5hM3R0pyA_sA0SdXIDeQRsiuFG3Q_iX_wboZGx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076200154</pqid></control><display><type>article</type><title>Numerical study of the Kitaev-Heisenberg chain</title><source>Elsevier ScienceDirect Journals</source><creator>Agrapidis, Cliò Efthimia ; van den Brink, Jeroen ; Nishimoto, Satoshi</creator><creatorcontrib>Agrapidis, Cliò Efthimia ; van den Brink, Jeroen ; Nishimoto, Satoshi</creatorcontrib><description>We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2017.09.056</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chlorides ; Heisenberg theory ; Honeycomb construction ; Ions ; K-intercalated RuCl3 ; Kitaev-Heisenberg chain ; Lanczos method ; Lattice theory ; Low temperature physics ; Magnetic fields ; Numerical analysis ; Ruthenium trichloride ; Spin structure ; Statistical models ; Structure factor</subject><ispartof>Physica. B, Condensed matter, 2018-05, Vol.536, p.461-463</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-7a4f61af13b394ce7d96406266ba0fcc698625d765bcb88ee5bb9f7f594fbfed3</citedby><cites>FETCH-LOGICAL-c331t-7a4f61af13b394ce7d96406266ba0fcc698625d765bcb88ee5bb9f7f594fbfed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2017.09.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Agrapidis, Cliò Efthimia</creatorcontrib><creatorcontrib>van den Brink, Jeroen</creatorcontrib><creatorcontrib>Nishimoto, Satoshi</creatorcontrib><title>Numerical study of the Kitaev-Heisenberg chain</title><title>Physica. B, Condensed matter</title><description>We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.</description><subject>Chlorides</subject><subject>Heisenberg theory</subject><subject>Honeycomb construction</subject><subject>Ions</subject><subject>K-intercalated RuCl3</subject><subject>Kitaev-Heisenberg chain</subject><subject>Lanczos method</subject><subject>Lattice theory</subject><subject>Low temperature physics</subject><subject>Magnetic fields</subject><subject>Numerical analysis</subject><subject>Ruthenium trichloride</subject><subject>Spin structure</subject><subject>Statistical models</subject><subject>Structure factor</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBCyRmBN8ie14YEAVUEQFC8yW7RxTR21S7KRS3x5DmTnLWf7vXD6ErgmuCCbitqt260OyFcVEVlhVmIsTNCONZCUljJ-iGVaUlDWn4hxdpNThXESSGapepy3E4MymSOPUHorBF-MaipcwGtiXSwgJegvxs3BrE_pLdObNJsHVX5-jj8eH98WyXL09PS_uV6VjjIylNLUXxHjCLFO1A9kqUWNBhbAGe-eEagTlrRTcOts0ANxa5aXnqvbWQ8vm6OY4dxeHrwnSqLthin1eqSmWgubreZ1T7JhycUgpgte7GLYmHjTB-keM7vSvGP0jRmOls5hM3R0pyA_sA0SdXIDeQRsiuFG3Q_iX_wboZGx4</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Agrapidis, Cliò Efthimia</creator><creator>van den Brink, Jeroen</creator><creator>Nishimoto, Satoshi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180501</creationdate><title>Numerical study of the Kitaev-Heisenberg chain</title><author>Agrapidis, Cliò Efthimia ; van den Brink, Jeroen ; Nishimoto, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-7a4f61af13b394ce7d96406266ba0fcc698625d765bcb88ee5bb9f7f594fbfed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chlorides</topic><topic>Heisenberg theory</topic><topic>Honeycomb construction</topic><topic>Ions</topic><topic>K-intercalated RuCl3</topic><topic>Kitaev-Heisenberg chain</topic><topic>Lanczos method</topic><topic>Lattice theory</topic><topic>Low temperature physics</topic><topic>Magnetic fields</topic><topic>Numerical analysis</topic><topic>Ruthenium trichloride</topic><topic>Spin structure</topic><topic>Statistical models</topic><topic>Structure factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrapidis, Cliò Efthimia</creatorcontrib><creatorcontrib>van den Brink, Jeroen</creatorcontrib><creatorcontrib>Nishimoto, Satoshi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrapidis, Cliò Efthimia</au><au>van den Brink, Jeroen</au><au>Nishimoto, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of the Kitaev-Heisenberg chain</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>536</volume><spage>461</spage><epage>463</epage><pages>461-463</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>We study the one-dimensional Kitaev-Heisenberg model as a possible realization of magnetic degrees of freedom of the K-intercalated honeycomb-lattice ruthenium trichloride α-RuCl3, denoted as K0.5RuClm. First, we discuss the possible charge ordering pattern in K0.5RuClm, where half of the j=12 spins are replaced by nonmagnetic ions in the honeycomb layer. Next, we investigate the low-energy excitations of the 1D Kitaev-Heisenberg model by calculating the dynamical spin structure factor using the Lanczos exact-diagonalization method. In the vicinity of Kitaev limit, there exist two well-separated dispersions. The bandwidth of each dispersion depends on the Heisenberg and Kitaev terms. This result may be relevant to the low-lying magnetic excitations of K0.5RuClm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2017.09.056</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2018-05, Vol.536, p.461-463 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_journals_2076200154 |
source | Elsevier ScienceDirect Journals |
subjects | Chlorides Heisenberg theory Honeycomb construction Ions K-intercalated RuCl3 Kitaev-Heisenberg chain Lanczos method Lattice theory Low temperature physics Magnetic fields Numerical analysis Ruthenium trichloride Spin structure Statistical models Structure factor |
title | Numerical study of the Kitaev-Heisenberg chain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20the%20Kitaev-Heisenberg%20chain&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Agrapidis,%20Cli%C3%B2%20Efthimia&rft.date=2018-05-01&rft.volume=536&rft.spage=461&rft.epage=463&rft.pages=461-463&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2017.09.056&rft_dat=%3Cproquest_cross%3E2076200154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076200154&rft_id=info:pmid/&rft_els_id=S0921452617306427&rfr_iscdi=true |