Optimal combined heat-and-power plant for a low-temperature geothermal source

This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-05, Vol.150, p.396-409
Hauptverfasser: Van Erdeweghe, Sarah, Van Bael, Johan, Laenen, Ben, D'haeseleer, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue
container_start_page 396
container_title Energy (Oxford)
container_volume 150
creator Van Erdeweghe, Sarah
Van Bael, Johan
Laenen, Ben
D'haeseleer, William
description This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-parallel and the HB4 configurations. The geothermal source conditions have been defined based on existing geothermal plants in the northwest of Europe. Production temperatures in the range of 110–150 °C and mass flow rates in the range of 100–200 kg/s are considered. The goal is to identify the best-performing CHP configuration for every set of geothermal source conditions (temperature and flow rate) and for multiple values of the heat demand. The electrical power output is used as the optimization objective and the different CHP plants are compared based on the exergetic plant efficiency. The optimal CHP plant has always a higher exergetic plant efficiency than the pure electrical power plant; up to 22.8%-pts higher for the connection to a 65/40 DH system and up to 20.9%-pts higher for the connection to a 90/60 DH system. The highest increase of the exergetic plant efficiency over the pure electrical power plant is obtained for low values of the geothermal source temperature and flow rate. •Comparison of four low-T fueled CHP plants based on exergetic plant efficiency.•Thermodynamic optimization of four CHP plants, coupled to district heating system.•Series, parallel, preheat-parallel and HB4 CHP configurations are studied.•Better utilization of low-T source in CHP plant than in pure power plant.•Exergetic efficiency of HB4 CHP up to 22.8%-pts higher than pure power plant.
doi_str_mv 10.1016/j.energy.2018.01.136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2076198640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218301646</els_id><sourcerecordid>2076198640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cb093f99ddcf07dce1cd9d81ebdf5c450710563e205dd5b3bf58eac30eeaf3d03</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwDxgiMTtcx3HiLEio4iUVdYHZcuybNlEaB9ul4t-TKsxMZzkPnY-QWwYpA1bcdykO6Lc_aQZMpsBSxoszsmCy5LQopTgnC-AFUJHn2SW5CqEDACGrakHeN2Ns97pPjNvX7YA22aGOVA-Wju6IPhl7PcSkcT7RSe-ONOJ-RK_jwWOyRRd36E_x4A7e4DW5aHQf8OZPl-Tz-elj9UrXm5e31eOaGi4hUlNDxZuqstY0UFqDzNjKSoa1bYTJBZQMRMExA2GtqHndCInacEDUDbfAl-Ru7h29-zpgiKqb9odpUmVQFqySRX5y5bPLeBeCx0aNfvrqfxQDdQKnOjWDUydwCpiawE2xhzmG04PvFr0KpsXBoG09mqisa_8v-AX4xXp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076198640</pqid></control><display><type>article</type><title>Optimal combined heat-and-power plant for a low-temperature geothermal source</title><source>Elsevier ScienceDirect Journals</source><creator>Van Erdeweghe, Sarah ; Van Bael, Johan ; Laenen, Ben ; D'haeseleer, William</creator><creatorcontrib>Van Erdeweghe, Sarah ; Van Bael, Johan ; Laenen, Ben ; D'haeseleer, William</creatorcontrib><description>This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-parallel and the HB4 configurations. The geothermal source conditions have been defined based on existing geothermal plants in the northwest of Europe. Production temperatures in the range of 110–150 °C and mass flow rates in the range of 100–200 kg/s are considered. The goal is to identify the best-performing CHP configuration for every set of geothermal source conditions (temperature and flow rate) and for multiple values of the heat demand. The electrical power output is used as the optimization objective and the different CHP plants are compared based on the exergetic plant efficiency. The optimal CHP plant has always a higher exergetic plant efficiency than the pure electrical power plant; up to 22.8%-pts higher for the connection to a 65/40 DH system and up to 20.9%-pts higher for the connection to a 90/60 DH system. The highest increase of the exergetic plant efficiency over the pure electrical power plant is obtained for low values of the geothermal source temperature and flow rate. •Comparison of four low-T fueled CHP plants based on exergetic plant efficiency.•Thermodynamic optimization of four CHP plants, coupled to district heating system.•Series, parallel, preheat-parallel and HB4 CHP configurations are studied.•Better utilization of low-T source in CHP plant than in pure power plant.•Exergetic efficiency of HB4 CHP up to 22.8%-pts higher than pure power plant.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.01.136</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>CHP ; Configuration management ; Configurations ; District heating ; Electric power ; Energy efficiency ; Energy industry ; Exergy ; Flow rates ; Flow velocity ; Geothermal ; Geothermal power ; Geothermal power plants ; Low temperature ; Mass flow ; Optimization ; ORC ; Power efficiency ; Power plants ; Temperature effects ; Thermodynamic optimization ; Thermodynamics</subject><ispartof>Energy (Oxford), 2018-05, Vol.150, p.396-409</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cb093f99ddcf07dce1cd9d81ebdf5c450710563e205dd5b3bf58eac30eeaf3d03</citedby><cites>FETCH-LOGICAL-c380t-cb093f99ddcf07dce1cd9d81ebdf5c450710563e205dd5b3bf58eac30eeaf3d03</cites><orcidid>0000-0002-1799-270X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544218301646$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Van Erdeweghe, Sarah</creatorcontrib><creatorcontrib>Van Bael, Johan</creatorcontrib><creatorcontrib>Laenen, Ben</creatorcontrib><creatorcontrib>D'haeseleer, William</creatorcontrib><title>Optimal combined heat-and-power plant for a low-temperature geothermal source</title><title>Energy (Oxford)</title><description>This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-parallel and the HB4 configurations. The geothermal source conditions have been defined based on existing geothermal plants in the northwest of Europe. Production temperatures in the range of 110–150 °C and mass flow rates in the range of 100–200 kg/s are considered. The goal is to identify the best-performing CHP configuration for every set of geothermal source conditions (temperature and flow rate) and for multiple values of the heat demand. The electrical power output is used as the optimization objective and the different CHP plants are compared based on the exergetic plant efficiency. The optimal CHP plant has always a higher exergetic plant efficiency than the pure electrical power plant; up to 22.8%-pts higher for the connection to a 65/40 DH system and up to 20.9%-pts higher for the connection to a 90/60 DH system. The highest increase of the exergetic plant efficiency over the pure electrical power plant is obtained for low values of the geothermal source temperature and flow rate. •Comparison of four low-T fueled CHP plants based on exergetic plant efficiency.•Thermodynamic optimization of four CHP plants, coupled to district heating system.•Series, parallel, preheat-parallel and HB4 CHP configurations are studied.•Better utilization of low-T source in CHP plant than in pure power plant.•Exergetic efficiency of HB4 CHP up to 22.8%-pts higher than pure power plant.</description><subject>CHP</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>District heating</subject><subject>Electric power</subject><subject>Energy efficiency</subject><subject>Energy industry</subject><subject>Exergy</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Geothermal</subject><subject>Geothermal power</subject><subject>Geothermal power plants</subject><subject>Low temperature</subject><subject>Mass flow</subject><subject>Optimization</subject><subject>ORC</subject><subject>Power efficiency</subject><subject>Power plants</subject><subject>Temperature effects</subject><subject>Thermodynamic optimization</subject><subject>Thermodynamics</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwDxgiMTtcx3HiLEio4iUVdYHZcuybNlEaB9ul4t-TKsxMZzkPnY-QWwYpA1bcdykO6Lc_aQZMpsBSxoszsmCy5LQopTgnC-AFUJHn2SW5CqEDACGrakHeN2Ns97pPjNvX7YA22aGOVA-Wju6IPhl7PcSkcT7RSe-ONOJ-RK_jwWOyRRd36E_x4A7e4DW5aHQf8OZPl-Tz-elj9UrXm5e31eOaGi4hUlNDxZuqstY0UFqDzNjKSoa1bYTJBZQMRMExA2GtqHndCInacEDUDbfAl-Ru7h29-zpgiKqb9odpUmVQFqySRX5y5bPLeBeCx0aNfvrqfxQDdQKnOjWDUydwCpiawE2xhzmG04PvFr0KpsXBoG09mqisa_8v-AX4xXp1</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Van Erdeweghe, Sarah</creator><creator>Van Bael, Johan</creator><creator>Laenen, Ben</creator><creator>D'haeseleer, William</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1799-270X</orcidid></search><sort><creationdate>20180501</creationdate><title>Optimal combined heat-and-power plant for a low-temperature geothermal source</title><author>Van Erdeweghe, Sarah ; Van Bael, Johan ; Laenen, Ben ; D'haeseleer, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cb093f99ddcf07dce1cd9d81ebdf5c450710563e205dd5b3bf58eac30eeaf3d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CHP</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>District heating</topic><topic>Electric power</topic><topic>Energy efficiency</topic><topic>Energy industry</topic><topic>Exergy</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Geothermal</topic><topic>Geothermal power</topic><topic>Geothermal power plants</topic><topic>Low temperature</topic><topic>Mass flow</topic><topic>Optimization</topic><topic>ORC</topic><topic>Power efficiency</topic><topic>Power plants</topic><topic>Temperature effects</topic><topic>Thermodynamic optimization</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Erdeweghe, Sarah</creatorcontrib><creatorcontrib>Van Bael, Johan</creatorcontrib><creatorcontrib>Laenen, Ben</creatorcontrib><creatorcontrib>D'haeseleer, William</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Erdeweghe, Sarah</au><au>Van Bael, Johan</au><au>Laenen, Ben</au><au>D'haeseleer, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal combined heat-and-power plant for a low-temperature geothermal source</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>150</volume><spage>396</spage><epage>409</epage><pages>396-409</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This work compares the performance of four combined heat-and-power (CHP) configurations for application in a binary geothermal plant connected to a low-temperature 65/40 and a high-temperature 90/60 district heating system. The investigated configurations are the series, the parallel, the preheat-parallel and the HB4 configurations. The geothermal source conditions have been defined based on existing geothermal plants in the northwest of Europe. Production temperatures in the range of 110–150 °C and mass flow rates in the range of 100–200 kg/s are considered. The goal is to identify the best-performing CHP configuration for every set of geothermal source conditions (temperature and flow rate) and for multiple values of the heat demand. The electrical power output is used as the optimization objective and the different CHP plants are compared based on the exergetic plant efficiency. The optimal CHP plant has always a higher exergetic plant efficiency than the pure electrical power plant; up to 22.8%-pts higher for the connection to a 65/40 DH system and up to 20.9%-pts higher for the connection to a 90/60 DH system. The highest increase of the exergetic plant efficiency over the pure electrical power plant is obtained for low values of the geothermal source temperature and flow rate. •Comparison of four low-T fueled CHP plants based on exergetic plant efficiency.•Thermodynamic optimization of four CHP plants, coupled to district heating system.•Series, parallel, preheat-parallel and HB4 CHP configurations are studied.•Better utilization of low-T source in CHP plant than in pure power plant.•Exergetic efficiency of HB4 CHP up to 22.8%-pts higher than pure power plant.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.01.136</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1799-270X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-05, Vol.150, p.396-409
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2076198640
source Elsevier ScienceDirect Journals
subjects CHP
Configuration management
Configurations
District heating
Electric power
Energy efficiency
Energy industry
Exergy
Flow rates
Flow velocity
Geothermal
Geothermal power
Geothermal power plants
Low temperature
Mass flow
Optimization
ORC
Power efficiency
Power plants
Temperature effects
Thermodynamic optimization
Thermodynamics
title Optimal combined heat-and-power plant for a low-temperature geothermal source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20combined%20heat-and-power%20plant%20for%20a%20low-temperature%20geothermal%20source&rft.jtitle=Energy%20(Oxford)&rft.au=Van%20Erdeweghe,%20Sarah&rft.date=2018-05-01&rft.volume=150&rft.spage=396&rft.epage=409&rft.pages=396-409&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.01.136&rft_dat=%3Cproquest_cross%3E2076198640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076198640&rft_id=info:pmid/&rft_els_id=S0360544218301646&rfr_iscdi=true