Smoothened complete electrode model

This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-07
Hauptverfasser: Hyvönen, Nuutti, Mustonen, Lauri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hyvönen, Nuutti
Mustonen, Lauri
description This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076099949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076099949</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760999493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDs7Nzy_JSM1LTVFIzs8tyEktSVVIzUlNLinKT0lVyAUSOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYG5mYGlpaWJpTJwqAMBZLq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076099949</pqid></control><display><type>article</type><title>Smoothened complete electrode model</title><source>Free E- Journals</source><creator>Hyvönen, Nuutti ; Mustonen, Lauri</creator><creatorcontrib>Hyvönen, Nuutti ; Mustonen, Lauri</creatorcontrib><description>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Convergence ; Electric contacts ; Electrical impedance ; Electrodes ; Finite element analysis ; Finite element method ; Mathematical analysis ; Mathematical models ; Nonlinear programming ; Regularity ; Resistance</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Hyvönen, Nuutti</creatorcontrib><creatorcontrib>Mustonen, Lauri</creatorcontrib><title>Smoothened complete electrode model</title><title>arXiv.org</title><description>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Electric contacts</subject><subject>Electrical impedance</subject><subject>Electrodes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Regularity</subject><subject>Resistance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDs7Nzy_JSM1LTVFIzs8tyEktSVVIzUlNLinKT0lVyAUSOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYG5mYGlpaWJpTJwqAMBZLq0</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Hyvönen, Nuutti</creator><creator>Mustonen, Lauri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170706</creationdate><title>Smoothened complete electrode model</title><author>Hyvönen, Nuutti ; Mustonen, Lauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760999493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Electric contacts</topic><topic>Electrical impedance</topic><topic>Electrodes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Regularity</topic><topic>Resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyvönen, Nuutti</creatorcontrib><creatorcontrib>Mustonen, Lauri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyvönen, Nuutti</au><au>Mustonen, Lauri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smoothened complete electrode model</atitle><jtitle>arXiv.org</jtitle><date>2017-07-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076099949
source Free E- Journals
subjects Boundary conditions
Boundary value problems
Convergence
Electric contacts
Electrical impedance
Electrodes
Finite element analysis
Finite element method
Mathematical analysis
Mathematical models
Nonlinear programming
Regularity
Resistance
title Smoothened complete electrode model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smoothened%20complete%20electrode%20model&rft.jtitle=arXiv.org&rft.au=Hyv%C3%B6nen,%20Nuutti&rft.date=2017-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076099949%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076099949&rft_id=info:pmid/&rfr_iscdi=true