Smoothened complete electrode model
This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hyvönen, Nuutti Mustonen, Lauri |
description | This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076099949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076099949</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760999493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDs7Nzy_JSM1LTVFIzs8tyEktSVVIzUlNLinKT0lVyAUSOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYG5mYGlpaWJpTJwqAMBZLq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076099949</pqid></control><display><type>article</type><title>Smoothened complete electrode model</title><source>Free E- Journals</source><creator>Hyvönen, Nuutti ; Mustonen, Lauri</creator><creatorcontrib>Hyvönen, Nuutti ; Mustonen, Lauri</creatorcontrib><description>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Convergence ; Electric contacts ; Electrical impedance ; Electrodes ; Finite element analysis ; Finite element method ; Mathematical analysis ; Mathematical models ; Nonlinear programming ; Regularity ; Resistance</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Hyvönen, Nuutti</creatorcontrib><creatorcontrib>Mustonen, Lauri</creatorcontrib><title>Smoothened complete electrode model</title><title>arXiv.org</title><description>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Electric contacts</subject><subject>Electrical impedance</subject><subject>Electrodes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Regularity</subject><subject>Resistance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDs7Nzy_JSM1LTVFIzs8tyEktSVVIzUlNLinKT0lVyAUSOTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kYG5mYGlpaWJpTJwqAMBZLq0</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Hyvönen, Nuutti</creator><creator>Mustonen, Lauri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170706</creationdate><title>Smoothened complete electrode model</title><author>Hyvönen, Nuutti ; Mustonen, Lauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760999493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Electric contacts</topic><topic>Electrical impedance</topic><topic>Electrodes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Regularity</topic><topic>Resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyvönen, Nuutti</creatorcontrib><creatorcontrib>Mustonen, Lauri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyvönen, Nuutti</au><au>Mustonen, Lauri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smoothened complete electrode model</atitle><jtitle>arXiv.org</jtitle><date>2017-07-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This work reformulates the complete electrode model of electrical impedance tomography in order to enable more efficient numerical solution. The model traditionally assumes constant contact conductances on all electrodes, which leads to a discontinuous Robin boundary condition since the gaps between the electrodes can be described by vanishing conductance. As a consequence, the regularity of the electromagnetic potential is limited to less than two square-integrable weak derivatives, which negatively affects the convergence of, e.g., the finite element method. In this paper, a smoothened model for the boundary conductance is proposed, and the unique solvability and improved regularity of the ensuing boundary value problem are proven. Numerical experiments demonstrate that the proposed model is both computationally feasible and also compatible with real-world measurements. In particular, the new model allows faster convergence of the finite element method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076099949 |
source | Free E- Journals |
subjects | Boundary conditions Boundary value problems Convergence Electric contacts Electrical impedance Electrodes Finite element analysis Finite element method Mathematical analysis Mathematical models Nonlinear programming Regularity Resistance |
title | Smoothened complete electrode model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smoothened%20complete%20electrode%20model&rft.jtitle=arXiv.org&rft.au=Hyv%C3%B6nen,%20Nuutti&rft.date=2017-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076099949%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076099949&rft_id=info:pmid/&rfr_iscdi=true |