Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling
The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. In this paper a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Niek J J de Klerk Vasileiadis, Alexandros Smith, Raymond B Bazant, Martin Z Wagemaker, Marnix |
description | The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. In this paper a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium-insertion in TiO\(_2\)-anatase, a well-known and intensively studied Li-ion battery electrode material. Previous experimental work on lithiated anatase TiO\(_2\) provided all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalising the impact of C-rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase TiO\(_2\) is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li\(_1\)TiO\(_2\) phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase TiO\(_2\) electrodes requires preventing the formation of a blocking Li\(_1\)TiO\(_2\) phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments demonstrates the capabilities of phase-field models for understanding Li-ion electrode materials, and its promise for guiding the design of electrodes through a thorough understanding of material properties and their interactions. |
doi_str_mv | 10.48550/arxiv.1706.09686 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076075763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076075763</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760757633</originalsourceid><addsrcrecordid>eNqNjUFLAzEUhIMgWLQ_oLeAFz1kfZs0yXqWigfBS4-FJbZv7asxWZOstP_eFPwBngZmvplhbNFCs-y0hgeXjvTTtBZMA4-mMxdsJpVqRbeU8orNcz4AgDRWaq1mLK2Oo3cUKHzwTzzxMcURUyHMPA7cU9mTKxQDp8DX9La56-XmXrjgisvIX0mcs3dXCqYTR4_bkuKulqd8Xhz3lRIDod_xr-p7X90bdjk4n3H-p9fs9nm1fnoR9ft7wlz6Q5xSqFEvwRqw2hql_kf9AoFjUbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076075763</pqid></control><display><type>article</type><title>Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling</title><source>Free E- Journals</source><creator>Niek J J de Klerk ; Vasileiadis, Alexandros ; Smith, Raymond B ; Bazant, Martin Z ; Wagemaker, Marnix</creator><creatorcontrib>Niek J J de Klerk ; Vasileiadis, Alexandros ; Smith, Raymond B ; Bazant, Martin Z ; Wagemaker, Marnix</creatorcontrib><description>The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. In this paper a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium-insertion in TiO\(_2\)-anatase, a well-known and intensively studied Li-ion battery electrode material. Previous experimental work on lithiated anatase TiO\(_2\) provided all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalising the impact of C-rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase TiO\(_2\) is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li\(_1\)TiO\(_2\) phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase TiO\(_2\) electrodes requires preventing the formation of a blocking Li\(_1\)TiO\(_2\) phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments demonstrates the capabilities of phase-field models for understanding Li-ion electrode materials, and its promise for guiding the design of electrodes through a thorough understanding of material properties and their interactions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1706.09686</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anatase ; Computer simulation ; Electrode materials ; Electrodes ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Material properties ; Mathematical models ; Organic chemistry ; Parameters ; Qualitative analysis</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Niek J J de Klerk</creatorcontrib><creatorcontrib>Vasileiadis, Alexandros</creatorcontrib><creatorcontrib>Smith, Raymond B</creatorcontrib><creatorcontrib>Bazant, Martin Z</creatorcontrib><creatorcontrib>Wagemaker, Marnix</creatorcontrib><title>Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling</title><title>arXiv.org</title><description>The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. In this paper a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium-insertion in TiO\(_2\)-anatase, a well-known and intensively studied Li-ion battery electrode material. Previous experimental work on lithiated anatase TiO\(_2\) provided all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalising the impact of C-rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase TiO\(_2\) is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li\(_1\)TiO\(_2\) phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase TiO\(_2\) electrodes requires preventing the formation of a blocking Li\(_1\)TiO\(_2\) phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments demonstrates the capabilities of phase-field models for understanding Li-ion electrode materials, and its promise for guiding the design of electrodes through a thorough understanding of material properties and their interactions.</description><subject>Anatase</subject><subject>Computer simulation</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Qualitative analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUFLAzEUhIMgWLQ_oLeAFz1kfZs0yXqWigfBS4-FJbZv7asxWZOstP_eFPwBngZmvplhbNFCs-y0hgeXjvTTtBZMA4-mMxdsJpVqRbeU8orNcz4AgDRWaq1mLK2Oo3cUKHzwTzzxMcURUyHMPA7cU9mTKxQDp8DX9La56-XmXrjgisvIX0mcs3dXCqYTR4_bkuKulqd8Xhz3lRIDod_xr-p7X90bdjk4n3H-p9fs9nm1fnoR9ft7wlz6Q5xSqFEvwRqw2hql_kf9AoFjUbE</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Niek J J de Klerk</creator><creator>Vasileiadis, Alexandros</creator><creator>Smith, Raymond B</creator><creator>Bazant, Martin Z</creator><creator>Wagemaker, Marnix</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170713</creationdate><title>Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling</title><author>Niek J J de Klerk ; Vasileiadis, Alexandros ; Smith, Raymond B ; Bazant, Martin Z ; Wagemaker, Marnix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760757633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Computer simulation</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Qualitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Niek J J de Klerk</creatorcontrib><creatorcontrib>Vasileiadis, Alexandros</creatorcontrib><creatorcontrib>Smith, Raymond B</creatorcontrib><creatorcontrib>Bazant, Martin Z</creatorcontrib><creatorcontrib>Wagemaker, Marnix</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niek J J de Klerk</au><au>Vasileiadis, Alexandros</au><au>Smith, Raymond B</au><au>Bazant, Martin Z</au><au>Wagemaker, Marnix</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling</atitle><jtitle>arXiv.org</jtitle><date>2017-07-13</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. In this paper a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium-insertion in TiO\(_2\)-anatase, a well-known and intensively studied Li-ion battery electrode material. Previous experimental work on lithiated anatase TiO\(_2\) provided all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalising the impact of C-rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase TiO\(_2\) is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li\(_1\)TiO\(_2\) phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase TiO\(_2\) electrodes requires preventing the formation of a blocking Li\(_1\)TiO\(_2\) phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments demonstrates the capabilities of phase-field models for understanding Li-ion electrode materials, and its promise for guiding the design of electrodes through a thorough understanding of material properties and their interactions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1706.09686</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076075763 |
source | Free E- Journals |
subjects | Anatase Computer simulation Electrode materials Electrodes Ion diffusion Lithium Lithium-ion batteries Material properties Mathematical models Organic chemistry Parameters Qualitative analysis |
title | Explaining key properties of lithiation in TiO\(_2\)-anatase Li-ion battery electrodes using phase-field modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Explaining%20key%20properties%20of%20lithiation%20in%20TiO%5C(_2%5C)-anatase%20Li-ion%20battery%20electrodes%20using%20phase-field%20modelling&rft.jtitle=arXiv.org&rft.au=Niek%20J%20J%20de%20Klerk&rft.date=2017-07-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1706.09686&rft_dat=%3Cproquest%3E2076075763%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076075763&rft_id=info:pmid/&rfr_iscdi=true |