Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals

We present a detailed study of the phase diagram of copper intercalated TiSe\(_2\) single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu\(_x\)TiSe\(_2\) samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-06
Hauptverfasser: Pribulová, Z, Medvecká, Z, Kačmarčík, J, Komanický, V, Klein, T, Rodière, P, Levy-Bertrand, F, Michon, B, Marcenat, C, Husaníková, P, Cambel, V, Šoltýs, J, Karapetrov, G, Borisenko, S, Evtushinsky, D, Berger, H, Samuely, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pribulová, Z
Medvecká, Z
Kačmarčík, J
Komanický, V
Klein, T
Rodière, P
Levy-Bertrand, F
Michon, B
Marcenat, C
Husaníková, P
Cambel, V
Šoltýs, J
Karapetrov, G
Borisenko, S
Evtushinsky, D
Berger, H
Samuely, P
description We present a detailed study of the phase diagram of copper intercalated TiSe\(_2\) single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu\(_x\)TiSe\(_2\) samples from three different sources with various copper content \(x\) and superconducting critical temperatures \(T_c\) have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, \(H_{c1}\). We then show that the temperature dependence of the superfluid density deduced from magnetic measurements (both \(H_{c1}\) and TDO techniques) clearly suggests the existence of a small energy gap in the system, with a coupling strength \(2\Delta_s \sim [2.4-2.8]k_BT_c\), regardless of the copper content, in puzzling contradiction with specific heat measurements which can be well described by one single large gap \(2\Delta_l \sim [3.7-3.9]k_BT_c\). Finally, our measurements reveal a non-trivial doping dependence of the condensation energy, which remains to be understood.
doi_str_mv 10.48550/arxiv.1704.08463
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076006635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076006635</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760066353</originalsourceid><addsrcrecordid>eNqNjL0KwjAYRYMgKNoHcAu42MH6NX_tXhRBnHQslKCxprSpJqno25vBB3A6l3suF6FFCgnLOYeNtG_9StIMWAI5E3SEpoTSdJ0zQiYocq4BACIywjmdosNR1kZ5fcHSXLG_K9v114-RXWgetn8o67VyuL_hYihX1buMz_qkQiJljJ02davwxX6cl62bo_EtQEU_ztBytz0X-3U4eg7K-arpB2uCqghkAkAIyul_qy_wL0K5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076006635</pqid></control><display><type>article</type><title>Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals</title><source>Free E- Journals</source><creator>Pribulová, Z ; Medvecká, Z ; Kačmarčík, J ; Komanický, V ; Klein, T ; Rodière, P ; Levy-Bertrand, F ; Michon, B ; Marcenat, C ; Husaníková, P ; Cambel, V ; Šoltýs, J ; Karapetrov, G ; Borisenko, S ; Evtushinsky, D ; Berger, H ; Samuely, P</creator><creatorcontrib>Pribulová, Z ; Medvecká, Z ; Kačmarčík, J ; Komanický, V ; Klein, T ; Rodière, P ; Levy-Bertrand, F ; Michon, B ; Marcenat, C ; Husaníková, P ; Cambel, V ; Šoltýs, J ; Karapetrov, G ; Borisenko, S ; Evtushinsky, D ; Berger, H ; Samuely, P</creatorcontrib><description>We present a detailed study of the phase diagram of copper intercalated TiSe\(_2\) single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu\(_x\)TiSe\(_2\) samples from three different sources with various copper content \(x\) and superconducting critical temperatures \(T_c\) have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, \(H_{c1}\). We then show that the temperature dependence of the superfluid density deduced from magnetic measurements (both \(H_{c1}\) and TDO techniques) clearly suggests the existence of a small energy gap in the system, with a coupling strength \(2\Delta_s \sim [2.4-2.8]k_BT_c\), regardless of the copper content, in puzzling contradiction with specific heat measurements which can be well described by one single large gap \(2\Delta_l \sim [3.7-3.9]k_BT_c\). Finally, our measurements reveal a non-trivial doping dependence of the condensation energy, which remains to be understood.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1704.08463</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Copper ; Critical field (superconductivity) ; Energy gap ; Fluids ; Magnetic measurement ; Magnetic properties ; Phase diagrams ; Photoelectric emission ; Single crystals ; Superfluidity ; Temperature dependence ; Thermodynamic properties ; Tunnel diodes</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Pribulová, Z</creatorcontrib><creatorcontrib>Medvecká, Z</creatorcontrib><creatorcontrib>Kačmarčík, J</creatorcontrib><creatorcontrib>Komanický, V</creatorcontrib><creatorcontrib>Klein, T</creatorcontrib><creatorcontrib>Rodière, P</creatorcontrib><creatorcontrib>Levy-Bertrand, F</creatorcontrib><creatorcontrib>Michon, B</creatorcontrib><creatorcontrib>Marcenat, C</creatorcontrib><creatorcontrib>Husaníková, P</creatorcontrib><creatorcontrib>Cambel, V</creatorcontrib><creatorcontrib>Šoltýs, J</creatorcontrib><creatorcontrib>Karapetrov, G</creatorcontrib><creatorcontrib>Borisenko, S</creatorcontrib><creatorcontrib>Evtushinsky, D</creatorcontrib><creatorcontrib>Berger, H</creatorcontrib><creatorcontrib>Samuely, P</creatorcontrib><title>Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals</title><title>arXiv.org</title><description>We present a detailed study of the phase diagram of copper intercalated TiSe\(_2\) single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu\(_x\)TiSe\(_2\) samples from three different sources with various copper content \(x\) and superconducting critical temperatures \(T_c\) have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, \(H_{c1}\). We then show that the temperature dependence of the superfluid density deduced from magnetic measurements (both \(H_{c1}\) and TDO techniques) clearly suggests the existence of a small energy gap in the system, with a coupling strength \(2\Delta_s \sim [2.4-2.8]k_BT_c\), regardless of the copper content, in puzzling contradiction with specific heat measurements which can be well described by one single large gap \(2\Delta_l \sim [3.7-3.9]k_BT_c\). Finally, our measurements reveal a non-trivial doping dependence of the condensation energy, which remains to be understood.</description><subject>Copper</subject><subject>Critical field (superconductivity)</subject><subject>Energy gap</subject><subject>Fluids</subject><subject>Magnetic measurement</subject><subject>Magnetic properties</subject><subject>Phase diagrams</subject><subject>Photoelectric emission</subject><subject>Single crystals</subject><subject>Superfluidity</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Tunnel diodes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYRYMgKNoHcAu42MH6NX_tXhRBnHQslKCxprSpJqno25vBB3A6l3suF6FFCgnLOYeNtG_9StIMWAI5E3SEpoTSdJ0zQiYocq4BACIywjmdosNR1kZ5fcHSXLG_K9v114-RXWgetn8o67VyuL_hYihX1buMz_qkQiJljJ02davwxX6cl62bo_EtQEU_ztBytz0X-3U4eg7K-arpB2uCqghkAkAIyul_qy_wL0K5</recordid><startdate>20170605</startdate><enddate>20170605</enddate><creator>Pribulová, Z</creator><creator>Medvecká, Z</creator><creator>Kačmarčík, J</creator><creator>Komanický, V</creator><creator>Klein, T</creator><creator>Rodière, P</creator><creator>Levy-Bertrand, F</creator><creator>Michon, B</creator><creator>Marcenat, C</creator><creator>Husaníková, P</creator><creator>Cambel, V</creator><creator>Šoltýs, J</creator><creator>Karapetrov, G</creator><creator>Borisenko, S</creator><creator>Evtushinsky, D</creator><creator>Berger, H</creator><creator>Samuely, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170605</creationdate><title>Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals</title><author>Pribulová, Z ; Medvecká, Z ; Kačmarčík, J ; Komanický, V ; Klein, T ; Rodière, P ; Levy-Bertrand, F ; Michon, B ; Marcenat, C ; Husaníková, P ; Cambel, V ; Šoltýs, J ; Karapetrov, G ; Borisenko, S ; Evtushinsky, D ; Berger, H ; Samuely, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760066353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Copper</topic><topic>Critical field (superconductivity)</topic><topic>Energy gap</topic><topic>Fluids</topic><topic>Magnetic measurement</topic><topic>Magnetic properties</topic><topic>Phase diagrams</topic><topic>Photoelectric emission</topic><topic>Single crystals</topic><topic>Superfluidity</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Tunnel diodes</topic><toplevel>online_resources</toplevel><creatorcontrib>Pribulová, Z</creatorcontrib><creatorcontrib>Medvecká, Z</creatorcontrib><creatorcontrib>Kačmarčík, J</creatorcontrib><creatorcontrib>Komanický, V</creatorcontrib><creatorcontrib>Klein, T</creatorcontrib><creatorcontrib>Rodière, P</creatorcontrib><creatorcontrib>Levy-Bertrand, F</creatorcontrib><creatorcontrib>Michon, B</creatorcontrib><creatorcontrib>Marcenat, C</creatorcontrib><creatorcontrib>Husaníková, P</creatorcontrib><creatorcontrib>Cambel, V</creatorcontrib><creatorcontrib>Šoltýs, J</creatorcontrib><creatorcontrib>Karapetrov, G</creatorcontrib><creatorcontrib>Borisenko, S</creatorcontrib><creatorcontrib>Evtushinsky, D</creatorcontrib><creatorcontrib>Berger, H</creatorcontrib><creatorcontrib>Samuely, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pribulová, Z</au><au>Medvecká, Z</au><au>Kačmarčík, J</au><au>Komanický, V</au><au>Klein, T</au><au>Rodière, P</au><au>Levy-Bertrand, F</au><au>Michon, B</au><au>Marcenat, C</au><au>Husaníková, P</au><au>Cambel, V</au><au>Šoltýs, J</au><au>Karapetrov, G</au><au>Borisenko, S</au><au>Evtushinsky, D</au><au>Berger, H</au><au>Samuely, P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals</atitle><jtitle>arXiv.org</jtitle><date>2017-06-05</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present a detailed study of the phase diagram of copper intercalated TiSe\(_2\) single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu\(_x\)TiSe\(_2\) samples from three different sources with various copper content \(x\) and superconducting critical temperatures \(T_c\) have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, \(H_{c1}\). We then show that the temperature dependence of the superfluid density deduced from magnetic measurements (both \(H_{c1}\) and TDO techniques) clearly suggests the existence of a small energy gap in the system, with a coupling strength \(2\Delta_s \sim [2.4-2.8]k_BT_c\), regardless of the copper content, in puzzling contradiction with specific heat measurements which can be well described by one single large gap \(2\Delta_l \sim [3.7-3.9]k_BT_c\). Finally, our measurements reveal a non-trivial doping dependence of the condensation energy, which remains to be understood.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1704.08463</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076006635
source Free E- Journals
subjects Copper
Critical field (superconductivity)
Energy gap
Fluids
Magnetic measurement
Magnetic properties
Phase diagrams
Photoelectric emission
Single crystals
Superfluidity
Temperature dependence
Thermodynamic properties
Tunnel diodes
title Magnetic and thermodynamic properties of Cu\(_x\)TiSe\(_2\) single crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magnetic%20and%20thermodynamic%20properties%20of%20Cu%5C(_x%5C)TiSe%5C(_2%5C)%20single%20crystals&rft.jtitle=arXiv.org&rft.au=Pribulov%C3%A1,%20Z&rft.date=2017-06-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1704.08463&rft_dat=%3Cproquest%3E2076006635%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076006635&rft_id=info:pmid/&rfr_iscdi=true