Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state

The four-qubit states \(\lvert\chi^{ij}\rangle\), exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its correspondi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Ritboon, Atirach, Croke, Sarah, Barnett, Stephen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ritboon, Atirach
Croke, Sarah
Barnett, Stephen M
description The four-qubit states \(\lvert\chi^{ij}\rangle\), exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the \(\lvert\chi^{ij}\rangle\) states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion (SPDC) process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum (OAM). After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state \(\lvert\chi^{00}\rangle\), and the \(\lvert\chi^{ij}\rangle\) states can be achieved by further simple transformations.
doi_str_mv 10.48550/arxiv.1703.01965
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075905038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075905038</sourcerecordid><originalsourceid>FETCH-proquest_journals_20759050383</originalsourceid><addsrcrecordid>eNqNjMGKwjAURcOAoGg_wN2D2ShM62tibF0PIy4dmGVBoqYaKXk1eXX8fLvwA1zdxTnnCjHNMVuWWuPChIe7Z3mBKsN8vdIfYiSVytNyKeVQJDFeEVGuCqm1GonfXaCWoj0BteyOpoFgTeOiYUceqAYD_E_QXojJf0FNXUhv3cExWM_Gn5u-rGbV8eKqOUQ2bCdiUJsm2uS1Y_G5-fn73qZtoFtnI--v_Ynv0V5iodeoUZXqPesJ3AJFOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075905038</pqid></control><display><type>article</type><title>Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state</title><source>Free E- Journals</source><creator>Ritboon, Atirach ; Croke, Sarah ; Barnett, Stephen M</creator><creatorcontrib>Ritboon, Atirach ; Croke, Sarah ; Barnett, Stephen M</creatorcontrib><description>The four-qubit states \(\lvert\chi^{ij}\rangle\), exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the \(\lvert\chi^{ij}\rangle\) states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion (SPDC) process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum (OAM). After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state \(\lvert\chi^{00}\rangle\), and the \(\lvert\chi^{ij}\rangle\) states can be achieved by further simple transformations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.01965</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angular momentum ; Data processing ; Photons ; Quantum entanglement ; Quantum phenomena ; Quantum theory ; Qubits (quantum computing) ; Transformations</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Ritboon, Atirach</creatorcontrib><creatorcontrib>Croke, Sarah</creatorcontrib><creatorcontrib>Barnett, Stephen M</creatorcontrib><title>Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state</title><title>arXiv.org</title><description>The four-qubit states \(\lvert\chi^{ij}\rangle\), exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the \(\lvert\chi^{ij}\rangle\) states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion (SPDC) process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum (OAM). After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state \(\lvert\chi^{00}\rangle\), and the \(\lvert\chi^{ij}\rangle\) states can be achieved by further simple transformations.</description><subject>Angular momentum</subject><subject>Data processing</subject><subject>Photons</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMGKwjAURcOAoGg_wN2D2ShM62tibF0PIy4dmGVBoqYaKXk1eXX8fLvwA1zdxTnnCjHNMVuWWuPChIe7Z3mBKsN8vdIfYiSVytNyKeVQJDFeEVGuCqm1GonfXaCWoj0BteyOpoFgTeOiYUceqAYD_E_QXojJf0FNXUhv3cExWM_Gn5u-rGbV8eKqOUQ2bCdiUJsm2uS1Y_G5-fn73qZtoFtnI--v_Ynv0V5iodeoUZXqPesJ3AJFOA</recordid><startdate>20170306</startdate><enddate>20170306</enddate><creator>Ritboon, Atirach</creator><creator>Croke, Sarah</creator><creator>Barnett, Stephen M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170306</creationdate><title>Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state</title><author>Ritboon, Atirach ; Croke, Sarah ; Barnett, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20759050383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angular momentum</topic><topic>Data processing</topic><topic>Photons</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ritboon, Atirach</creatorcontrib><creatorcontrib>Croke, Sarah</creatorcontrib><creatorcontrib>Barnett, Stephen M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritboon, Atirach</au><au>Croke, Sarah</au><au>Barnett, Stephen M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state</atitle><jtitle>arXiv.org</jtitle><date>2017-03-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The four-qubit states \(\lvert\chi^{ij}\rangle\), exhibiting genuinely multi-partite entanglement have been shown to have many interesting properties and have been suggested for novel applications in quantum information processing. In this work we propose a simple quantum circuit and its corresponding optical embodiment with which to prepare photon pairs in the \(\lvert\chi^{ij}\rangle\) states. Our approach uses hyper-entangled photon pairs, produced by the type-I spontaneous parametric down-conversion (SPDC) process in two contiguous nonlinear crystals, together with a set of simple linear-optical transformations. Our photon pairs are maximally hyper-entangled in both their polarisation and orbital angular momentum (OAM). After one of these daughter photons passes through our optical setup, we obtain photon pairs in the hyper-entangled state \(\lvert\chi^{00}\rangle\), and the \(\lvert\chi^{ij}\rangle\) states can be achieved by further simple transformations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.01965</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075905038
source Free E- Journals
subjects Angular momentum
Data processing
Photons
Quantum entanglement
Quantum phenomena
Quantum theory
Qubits (quantum computing)
Transformations
title Proposed optical realisation of a two photon, four-qubit entangled \(\chi\) state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Proposed%20optical%20realisation%20of%20a%20two%20photon,%20four-qubit%20entangled%20%5C(%5Cchi%5C)%20state&rft.jtitle=arXiv.org&rft.au=Ritboon,%20Atirach&rft.date=2017-03-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.01965&rft_dat=%3Cproquest%3E2075905038%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075905038&rft_id=info:pmid/&rfr_iscdi=true